Please wait a minute...
Journal of Integrative Neuroscience  2019, Vol. 18 Issue (3): 253-259    DOI: 10.31083/j.jin.2019.03.183
Original Research Previous articles | Next articles
fNIRS correlates of the development of inhibitory control in young obese subjects
Jiaai Huang1, 2, *(), Mingsheng Xiong2, *(), Xinyue Xiao1, Xia Xu2, Xiaobin Hong2
1 Graduate School, Wuhan Sports University, Wuhan, 430079, P. R. China
2 Hubei Key Laboratory of Sport Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, 430079, P. R. China
Download:  PDF(7722KB)  ( 767 ) Full text   ( 44 )
Export:  BibTeX | EndNote (RIS)      
Abstract  

Executive functions are closely related to the prefrontal cortex, and inhibitory control is an important component of executive functioning. Previous studies have found that inhibitory control continues to develop after adolescence and that obesity is associated with executive functions. However, few studies have addressed whether obesity affects the development of inhibitory control. Hence, we focused on whether inhibitory control continues to develop after adolescence in obese individuals. We used a Stroop task to measure the inhibitory control of young obese subjects, and monitored accompanying brain activation by functional near-infrared spectroscopy technology. The findings suggest that brain activation due to Stroop interference does not increase with age in obese subjects and that early prevention of executive function deficit is recommended.

Key words:  Obesity      inhibitory control      development      fNIRS      Stroop color-word task      frontal cortical function     
Submitted:  17 June 2019      Accepted:  23 August 2019      Published:  30 September 2019     
Fund: 
  • 81971661/Science Fund for Hubei Superior Discipline Groups of Physical Education and Health Promotion, National Natural Science Foundation of China
  • 2014B094/General Administration of Sport of China
  • 2016CFA098/Natural Science Foundation of Hubei Province
*Corresponding Author(s):  Jiaai Huang Email: sherry910527@hotmail.com; Mingsheng Xiong Email: 1990012@whsu.edu.cn   

Cite this article: 

Jiaai Huang, Mingsheng Xiong, Xinyue Xiao, Xia Xu, Xiaobin Hong. fNIRS correlates of the development of inhibitory control in young obese subjects. Journal of Integrative Neuroscience, 2019, 18(3): 253-259.

URL: 

https://jin.imrpress.com/EN/10.31083/j.jin.2019.03.183     OR     https://jin.imrpress.com/EN/Y2019/V18/I3/253

Table 1  Demographic characteristics and descriptive statistics (mean ± SD)
Male (n = 24) Female (n = 14) t
BMI (kg/m2) 32.41 ± 4.33 30.07 ± 3.56 1.71
Age 16.88 ± 4.92 14.79 ± 4.28 1.32
RT Interference 94.17 ± 116.69 102.56 ± 61.14 0.25
ACC Interference -0.10 ± 0.21 -0.05 ± 0.04 0.89
[1] Adleman, N. E., Menon, V., Blasey, C. M., White, C. D., Warsofsky, I. S., Glover, G. H. and Reiss, A. L. (2002) A developmental fMRI study of the Stroop color-word task. NeuroImage 16, 61-75.
[2] Aron, A. R. (2010) Progress in executive-function research: from tasks to functions to regions to networks. Current Directions in Psychological Science 17, 124-129.
[3] Best, J. R., Miller, P. H. and Jones, L. L. (2009) Executive functions after age 5: changes and correlates. Developmental Review 29, 180-200.
[4] Blakemore, S. J. and Choudhury, S. (2006) Development of the adolescent brain: implications for executive function and social cognition. Journal of Child Psychology and Psychiatry, and Allied Disciplines 47, 296-312.
[5] Brown, T. T., Lugar, H. M., Coalson, R. S., Miezin, F. M., Petersen, S. E., and Schlaggar, B. L. (2005) Developmental changes in human cerebral functional organization for word generation. Cerebral Cortex 15, 275-290.
[6] Bruce, A. S., Black, W. R., Bruce, J. M., Daldalian, M., Martin, L. E. and Davis, A. M. (2011) Ability to delay gr.pngication and BMI in preadolescence. Obesity 19, 1101-1102.
[7] Buttelmann, F. and Karbach, J. (2017) Development and plasticity of cognitive flexibility in early and middle childhood. Frontiers in Psychology 8, 1040-1040.
[8] Chen, A., Tang, D. and Chen, X. (2013) Training reveals the sources of Stroop and Flanker interference effects. PLoS One 8, e76580.
[9] Cutini, S., Scatturin, P. and Zorzi, M. (2011) A new method based on ICBM152 head surface for probe placement in multichannel fNIRS. NeuroImage 54, 919-927.
[10] Diamond, A. (2013) Executive functions. Annual Review of Psychology 64, 135-168.
[11] Dupuy, O., Gauthier, C. J., Fraser, S. A., Desjardins-Crèpeau, L., Desjardins, M., Mekary, S., Lesage, F., Hoge, R. D., Pouliot, P. and Bherer, L. (2015) Higher levels of cardiovascular fitness are associated with better executive function and prefrontal oxygenation in younger and older women. Frontiers in Human Neuroscience 9, 66-66.
[12] Ehlis, A. C., Herrmann, M. J., Wagener, A., and Fallgatter, A. J. (2005) Multi-channel near-infrared spectroscopy detects specific inferior-frontal activation during incongruent Stroop trials. Biological Psychology 69, 315-331.
[13] Esteban-Cornejo, I., Ortega, F. B. and Catena, A. (2018) Neural perspectives on cognitive control development during childhood and adolescence should take into account how obesity affects brain development. Acta Paediatrica 107, 720-721.
[14] Force, G. C. O. T. (2004) Body mass index reference norm for screening overweight and obesity in chinese children and adolescents. Chinese Journal of Epidemiology 25, 97-102.
[15] Garon, N., Bryson, S. E. and Smith, I. M. (2008) Executive function in preschoolers: a review using an integrative framework. Psychological Bulletin 134, 31-60.
[16] Hsu, N. S., Novick, J. M. and Jaeggi, S. M. (2014) The development and malleability of executive control abilities. Frontiers in Behavioral Neuroscience 8, 221-221.
[17] Huizinga, M., C. V. and van der Molen, M. W, . (2006) Age-related change in executive function: developmental trends and a latent variable analysis. Neuropsychologia 44, 2017-2036.
[18] Ikeda, Y., Okuzumi, H., Kokubun, M. and Haishi, K. (2011) Age-related trends of interference control in school-age children and young adults in the Stroop color-word test. Psychological Reports 108, 577-584.
[19] Kamijo, K., Khan, N. A., Po.pngex, M. B., Scudder, M. R., Drollette, E. S., Raine, L. B., Evans, E. M., Castelli, D. M. and Hillman, C. H. (2012) The relation of adiposity to cognitive control and scholastic achievement in preadolescent children. Obesity 20, 2406-2411.
[20] Kurth, F., Levitt, J. G., Phillips, O. R., Luders, E., Woods, R. P., Mazziotta, J. C., Toga, A. W. and Narr, K. L. (2013) Relationships between gray matter, body mass index, and waist circumference in healthy adults. Human Brain Mapping 34, 1737-1746.
[21] Leon-Carrion, J., García-Orza, J. and Pérez-Santamaría, F. J. (2004) Development of the inhibitory component of the executive functions in children and adolescents. International Journal of Neuroscience 114, 1291-1311.
[22] Li, Y., Dai, Q., Jackson, J. C. and Zhang, J. (2008) Overweight is associated with decreased cognitive functioning among school-age children and adolescents. Obesity 16, 1809-1815.
[23] Liang, J., Matheson, B. E., Kaye, W. H. and Boutelle, K. N. (2014) Neurocognitive correlates of obesity and obesity-related behaviors in children and adolescents. International Journal of Obesity 38, 494-506.
[24] Ljubisavljevic, M., Maxood, K., Bjekic, J., Oommen, J. and Nagelkerke, N. (2016) Long-term effects of repeated prefrontal cortex transcranial direct current stimulation (tdcs) on food craving in normal and overweight young adults. Brain Stimulation 9, 826-833.
[25] Luna, B., Padmanabhan, A. and O'Hearn, K. (2010) What has fMRI told us about the development of cognitive control through adolescence? Brain and Cognition 72, 101-113.
[26] Maayan, L., Hoogendoorn, C., Sweat, V. and Convit, A. (2011) Disinhibited eating in obese adolescents is associated with orbitofrontal volume reductions and executive dysfunction. Obesity 19, 1382-1387.
[27] Makris, A., Darcey, V. L., Rosenbaum, D. L., Komaroff, E., Vander Veur, S. S., Collins, B. N., Klein, S., Wyatt, H. R. and Foster, G. D. (2013) Similar effects on cognitive performance during high- and low-carbohydrate obesity treatment. Nutrition & Diabetes 3, e89-e89.
[28] Moffitt, T. E., Arseneault, L., Belsky, D., Dickson, N., Hancox, R. J., Harrington, H., Houts, R., Poulton, R., Roberts, B. W., Ross, S., Sears, M. R., Thomson, W. M. and Caspi, A. (2011) A gradient of childhood self-control predicts health, wealth, and public safety. Proceedings of the National Academy of Sciences of the United States of America 108, 2693-2698.
[29] Nederkoorn, C., Jansen, E., Mulkens, S. and Jansen, A. (2007) Impulsivity predicts treatment outcome in obese children. Behaviour Research and Therapy 45, 1071-1075.
[30] Nigg, J. T. (2000) On inhibition/disinhibition in developmental psychopathology: views from cognitive and personality psychology and a working inhibition taxonomy. Psychological Bulletin 126, 220-246.
[31] Nuttall, F. Q. (2015) Body mass index: obesity, bmi, and health: a critical review. Nutrition Today 50, 117-128.
[32] Okamoto, M., Tsuzuki, D., Clowney, L., Dan, H., Singh, A. K. and Dan, I. (2009) Structural atlas-based spatial registration for functional near-infrared spectroscopy enabling inter-study data integration. Clinical Neurophysiology 120, 1320-1328.
[33] Ordaz, S. J., Foran, W., Velanova, K. and Luna, B. (2013) Longitudinal growth curves of brain function underlying inhibitory control through adolescence. Journal of Neuroscience 33, 18109-18124.
[34] Pauli-Pott, U., Albayrak, O., Hebebrand, J. and Pott, W. (2010) Association between inhibitory control capacity and body weight in overweight and obese children and adolescents: dependence on age and inhibitory control component. Child Neuropsychology 16, 592-603.
[35] Prencipe, A., Kesek, A., Cohen, J., Lamm, C., Lewis, M. D., and Zelazo, P. D. (2011) Development of hot and cool executive function during the transition to adolescence. Journal of Experimental Child Psychology 108, 621-637.
[36] Reinert, K. R. S., Po'e, E. K. and Barkin, S. L. (2013) The relationship between executive function and obesity in children and adolescents: a systematic literature review. Journal of Obesity 2013, 820956-820956.
[37] Satterthwaite, T. D., Wolf, D. H., Erus, G., Ruparel, K., Elliott, M. A., Gennatas, E. D., Hopson, R., Jackson, C., Prabhakaran, K., Bilker, W. B., Calkins, M. E., Loughead, J., Smith, A., Roalf, D. R., Hakonarson, H., Verma, R., Davatzikos, C., Gur, R. C. and Gur, R. E. (2013) Functional maturation of the executive system during adolescence. Journal of Neuroscience 33, 16249-16261.
[38] Schroeter, M. L., Cutini, S., Wahl, M. M., Scheid, R. and Yves von Cramon, D. (2007) Neurovascular coupling is impaired in cerebral microangiopathy--an event-related Stroop study. Neuroimage 34, 26-34.
[39] Schroeter, M. L., Zysset, S., Wahl, M. and von Cramon, D. Y. (2004) Prefrontal activation due to Stroop interference increases during development--an event-related fNIRS study. NeuroImage 23, 1317-1325.
[40] Shields, G. S., Moons, W. G. and Slavich, G. M. (2017) Inflammation, self-regulation, and health: an immunologic model of self-regulatory failure. Perspectives on Psychological Science 12, 588-612.
[41] Shing, Y. L., Lindenberger, U., Diamond, A., Li, S. C. and Davidson, M. C. (2010) Memory maintenance and inhibitory control differentiate from early childhood to adolescence. Developmental Neuropsychology 35, 679-697.
[42] Singh, A. K. and Dan, I. (2006) Exploring the false discovery rate in multichannel NIRS. Neuroimage 33, 542-549.
[43] Smith, E., Hay, P., Campbell, L. and Trollor, J. N. (2011) A review of the association between obesity and cognitive function across the lifespan: implications for novel approaches to prevention and treatment. Obesity Reviews 12, 740-755.
[44] Szűcs, D., Killikelly, C. and Cutini, S. (2012) Event-related near-infrared spectroscopy detects conflict in the motor cortex in a Stroop task. Brain Research 1477, 27-36.
[45] Tanaka, C., Matsui, M., Uematsu, A., Noguchi, K. and Miyawaki, T. (2012) Developmental trajectories of the fronto-temporal lobes from infancy to early adulthood in healthy individuals. Developmental Neuroscience 34, 477-487.
[46] Timinkul, A., Kato, M., Omori, T., Deocaris, C. C., Ito, A., Kizuka, T., Sakairi, Y., Nishijima, T., Asada, T. and Soya, H. (2008) Enhancing effect of cerebral blood volume by mild exercise in healthy young men: a near-infrared spectroscopy study. Neuroscience Research 61, 242-248.
[47] Tsuzuki, D., Jurcak, V., Singh, A. K., Okamoto, M., Watanabe, E. and Dan, I. (2007) Virtual spatial registration of stand-alone fNIRS data to MNI space. NeuroImage 34, 1506-1518.
[48] Willeumier, K. C., Taylor, D. V. and Amen, D. G. (2011) Elevated BMI is associated with decreased blood flow in the prefrontal cortex using SPECT imaging in healthy adults. Obesity 19, 1095-1097.
[49] Wirt, T., V., Hundsdörfer, Schreiber, A., Kesztyüs, D., Steinacker, J. M. and “Komm mit in das gesunde Boot - Grundschule” Research. ( 2014) Associations between inhibitory control and body weight in German primary school children. Eating Behaviors 15, 9-12.
[50] Wu, K. K., Chan, S. K., Leung, P. W. L., Liu, W. S., Leung, F. L. T. and Ng, R. (2011) Components and developmental differences of executive functioning for school-aged children. Developmental Neuropsychology 36, 319-337.
[51] Xianlin, Y. I., Wang, M and Wang, X. ( 2015) The relationship between executive functions and pediatric obesity epidemic. Advances in Psychological Science 23, 1920-1920.
[52] Xu, J., Mendrek, A., Cohen, M. S., Monterosso, J., Simon, S., Jarvik, M., Olmstead, R., Brody, A. L., Ernst, M. and London, E. D. (2007) Effect of cigarette smoking on prefrontal cortical function in nondeprived smokers performing the Stroop task. Neuropsychopharmacology 32, 1421-1428.
[53] Yennu, A., Tian, F., Smith-Osborne, A., Gatchel, R. J., Woon, F. L. and Liu, H. (2016) Prefrontal responses to Stroop tasks in subjects with post-traumatic stress disorder assessed by functional near infrared spectroscopy. Scie.pngic Reports 6, 30157-30157.
[1] Shinji Ijichi, Naomi Ijichi, Yukina Ijichi, Chikako Imamura, Hisami Sameshima, Yoichi Kawaike, Hirofumi Morioka. The origin of complex human diversity: Stochastic epistatic modules and the intrinsic compatibility between distributional robustness and phenotypic changeability[J]. Journal of Integrative Neuroscience, 2018, 17(1): 1-10.
No Suggested Reading articles found!