Please wait a minute...
Journal of Integrative Neuroscience  2020, Vol. 19 Issue (1): 77-87    DOI: 10.31083/j.jin.2020.01.1248
Original Research Previous articles | Next articles
NF-κB “decoy” inhibits COX-2 expression in epileptic rat brain
Jing Xu1, Yiping Sun1, Yongshun Zhao2, Qifa Li1, Biying Ge1, 3, Shufang Dai1, Kemin Liu1, Hong Xu1, Lei Fu1, Jie Zhao3, *()
1Functional Laboratory, Dalian Medical University, Dalian 116044, P. R. China
2Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116044, P. R. China
3National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, P. R. China
Download:  PDF(19960KB)  ( 353 ) Full text   ( 30 )
Export:  BibTeX | EndNote (RIS)      
Abstract  

There is a need to investigate the role of nuclear factor kappa B in the regulation of cyclooxygenase-2 expression in the epileptic rat brain and cultured hippocampal neurons. Immunofluorescence and polymerase chain reaction was used to detect the expression of nuclear factor kappa B and cyclooxygenase-2. In cultured hippocampal neurons and rat brain: the control group compared with the normal group, nuclear factor kappa B expression in the hippocampal dentate gyrus, cerebral cortex, the piriform cortex brain regions were significantly increased (P < 0.01). This is accompanied by a significant increase in cyclooxygenase-2 protein and mRNA expressions in the hippocampus (P < 0.01). In the experimental group compared to the control group, the nuclear factor-kappa B expression in the hippocampal dentate gyrus, cerebral cortex, piriform cortex, and other brain regions was significantly lower (P < 0.01), with the accompanying decrease in cyclooxygenase-2 protein and mRNA expression (P < 0.01) in the hippocampus. In conclusion, κB-decoy can inhibit nuclear factor kappa B activation in epileptic rat brain and cyclooxygenase-2 overexpression.

Key words:  NF-κB      κB-decoy      cyclooxygenase-2      seizures     
Submitted:  25 November 2019      Accepted:  16 March 2020      Published:  30 March 2020     
*Corresponding Author(s):  Jie Zhao     E-mail:  zhaoj@dmu.edu.cn

Cite this article: 

Jing Xu, Yiping Sun, Yongshun Zhao, Qifa Li, Biying Ge, Shufang Dai, Kemin Liu, Hong Xu, Lei Fu, Jie Zhao. NF-κB “decoy” inhibits COX-2 expression in epileptic rat brain. Journal of Integrative Neuroscience, 2020, 19(1): 77-87.

URL: 

https://jin.imrpress.com/EN/10.31083/j.jin.2020.01.1248     OR     https://jin.imrpress.com/EN/Y2020/V19/I1/77

Figure 1.  κB-decoy inhibits the expression of NF-κB in hippocampal neurons. (A) Immunocytochemistry of NF-κB expression in hippocampus neurons (× 100, × 400). (B) The optical density of immunocytochemistry of NF-κB. N: Normal; S: scrambled-decoy 48 h; D: κB-decoy 48 h; L: LPS (100 ng/ml), * compared with N group; # compared with S + L group.

Figure 2.  κB-decoy inhibits COX-2 expression in hippocampal neurons. (A) Immunocytochemistry of COX-2 expression in hippocampal neurons ( × 100, × 400). (B) The optical density of immunocytochemistry of COX-2. N: Normal; S: scrambled-decoy 48 h; D: κB-decoy 48 h; L: LPS (100 ng/ml),* compared with N group; # compared with S + L group.

Figure 3.  κB-decoy inhibits of COX-2 mRNA expression in hippocampal neurons. (A) RT-PCR was used to detect the mRNA expression of COX-2 in hippocampal neurons after treatment with κB-decoy. (B) Quantitative RT-PCR analysis of COX-2 expression in hippocampal neurons. Control group: scrambled-decoy + LPS; DNA group: κB-decoy + LPS; * compared with the control group.

Figure 4.  κB-decoy inhibits the expression of NF-κB in seizure-induced rat brain. (A) Immunocytochemistry of NF-κB expression in seizure-induced rat’s brain ( × 400). (B) The optical density of immunocytochemistry of NF-κB. N: Normal; S: scrambled-decoy + Pilocarpine; D: κB-decoy + Pilocarpine; * compared with N group; # compared with S group.

Figure 5.  κB-decoy inhibits the expression of COX-2 in the seizure-induced rat brain. (A) Immunocytochemistry of COX-2 expression in the seizure-induced rat’s brain ( × 400). (B) The optical density of immunocytochemistry of COX-2. N: Normal; S: scrambled-decoy + Pilocarpine; D: κB-decoy + Pilocarpine; * compared with N group; # compared with S group.

Figure 6.  κB-decoy inhibits COX-2 mRNA expression in the seizure-induced rat brain. (A) Bands of COX-2 in the hippocampus of seizure-induced rats transfected with κB-decoy. (B) Quantitative RT-PCR analysis of COX-2 expression in the hippocampus of seizure-induced rats. N: Normal; S + P: scrambled-decoy + Pilocarpine; D + P: κB-decoy + Pilocarpine; * compared with N group; # compared with S + P group.

[1] Barbalho, P. G., Lopes-Cendes, I. and Maurer-Morelli, C. V. (2016) Indomethacin treatment prior to pentylenetetrazole-induced seizures downregulates the expression of il1b and cox2 and decreases seizure-like behavior in zebrafish larvae. BMC Neuroscience 17, 12.
[2] Ciceri, P., Zhang, Y., Shaffer, A. F., Leahy, K. M., Woerner, M. B., Smith, W. G., Seibert, K. and Isakson, P. C. (2002) Pharmacology of celecoxib in tat brain after kainite administration. Journal of Pharmacology and Experimental Therapeutics 302, 846-852.
[3] Das, A., Wallace, G. C., Holmes, C., McDowell, M. L., Smith, J. A., Marshall, J. D., Bonilha, L., Edwards, J. C., Glazier, S. S., Ray, S. K. and Banik, N. L. (2012) Hippocampal tissue of patients with refractory temporal lobe epilepsy is associated with astrocyte activation, inflammation, and altered expression of channels and receptors. Neuroscience 220, 237-246.
[4] Deng, X., Wang, M., Hu, S., Feng, Y., Shao, Y., Xie, Y., Wu, M., Chen, Y. and Shi, X. (2019) The Neuroprotective effect of Astaxanthin on pilocarpine-induced status epilepticus in rats. Frontiers in Cellular Neuroscience 13, 123.
[5] Desjardins, P., Sauvageau, A., Bouthillier, A., Navarro, D., Hazell, A. S., Rose, C. and Butterworth, R. F. (2003) Induction of astrocytic cyclooxygenase-2 in epileptic patients with hippocampal sclerosis. Neurochemistry International 42, 299-303.
[6] Dhir, A. and Kulkarni, S. K. (2006a) Rofecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor potentiates the anticonvulsant activity of tiagabine against pentylenetetrazol-induced convulsions in mice. Inflammopharmacology 14, 222-225.
[7] Dhir, A., Naidu, P. S., Kulkarni, S. K. (2006b) Effect of cyclooxygenase-2 (COX-2) inhibitors in various animal models (bicuculline, picrotoxin, maximal electroshock-induced convulsions) of epilepsy with the possible mechanism of action. Indian Journal of Experimental Biology 44, 286-291.
[8] Fabre, V., Boutrel, B., Hanoun, N., Lanfumey, L., Fattaccini, C. M., Demeneix, B., Adrien, J., Hamon, M. and Martres, M. P. (2000) Homeostatic regulation of serotonergic function by the serotonin transporter as revealed by nonviral gene transfer. Journal of Neuroscience 20, 5065-5075.
[9] Foo, S. Y. and Nolan, G. P. (1999) NF-κB to the rescue: RELs, apoptosis at transformation. Trends in Genetics 15, 229-235.
[10] Ghosh, S. (1998) NF-kappaB and Rel protein: evolutionarily conserved of immune responses. Annual Review of Immunology 16, 225-260.
[11] Gobbo, O. L., and O’Mara, S. M. (2004) Post-treatment, but not pre-treatment, with the selective cyclooxygenase-2 inhibitor celecoxib, markedly enhances functional recovery from kainic acid-induced neurodegeneration. Neuroscience 125, 317-327.
[12] Kawaguchi, K., Hickey, R. W., Rose, M. E., Zhu, L., Chen, J. and Graham, S. H. (2005) Cyclooxygenase-2 expression is induced in the rat brain after kainite-induced seizures and promotes neuronal death in the CA3 hippocampus. Brain Research 1050, 130-137.
[13] Keun, H. J., Kon, C. and Soon, T. L. (2006) Cyclooxygenase-2 inhibitor, celecoxib, inhibits the altered hippocampal neurogenesis with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neurobiology of Disease 23, 237-246.
[14] Kim, Y. H., Rhyu, I. J., Park, K. W., Eun, B. L., Kim, Y. I., Rha, H. K., Kim, D. S., Jo, Y. H., Whang, K. T. and Kim, M. S. (2001) The induced of BDNF and c-fos mRNA in the hippocampal formation after febrile seizure. NeuroReport 12, 3243-3246.
[15] Kojima, M., Morisaki, T., Izuhara, K., Uchiyama, A., Matsunari, Y., Katano, M. and Tanaka, M. (2000) Lipopolysaccharide increases cyclo-oxygenase-2 expression in a colon carcinoma cell line through nuclear factor-kappa B activation. Oncogene 19, 1225-1231.
[16] Kunz, T. and Oliw, E. H. (2001) The selective cyclooxygenase-2 inhibitor rofecoxib reduces kainate-induced cell death in the rat hippocampus. European Journal of Neuroscience 13, 569-575.
[17] Liu, Z., Yang, Y., Silveira, D. C., Sarkisian, M. R., Tandon, P., Huang, L. T., Stafstrom, C. E. and Holmes, G. L. (1999) Consequence of recurrent seizures during early brain development. Journal of Neuroscience 92, 1443-1454.
[18] Morishita, R., Higaki, J., Tomita, N. and Ogihara, T. (1998) Application of transcription factor “decoy” strategy as means of gene therapy and study of gene expression in cardiovascular disease. Circulation Research 82, 1023-1028.
[19] Okada, K., Yuhi, T., Tsuji, S. and Yamashita, U. (2001) Cyclooxygenase-2 expression in the hippocampus of genetically epilepsy susceptible E1 mice was increased after seizure. Brain Research 894, 332-335.
[20] Prasad, A. V., Pilcher, W. H. and Joseph, S. A. (1994) Nuclear factor-kappa B in rat brain: enhanced DNA-binding activity following convulsant-induced seizures. Neuroscience Letters 170, 145-148.
[21] Rong, Y. and Baudry, M. (1996) Seizure activity results in a rapid induction of nuclear factor-B in adult but not juvenile rat limbic structures. Journal of Neurochemistry 67, 662-668.
[22] Samland, H., Huitron-Resendiz, S., Masliah, E., Criado, J., Henriksen, S. J. and Campbell, I. L. (2003) The profound increase in sensitivity to glutamatergic- but not cholinergic agonist-induced seizures in transgenic mice with astrocyte production of IL-6. Journal of Neuroscience Research 73, 176-187.
[23] Sanjeewa, K. K. A., Jayawardena, T. U., Kim, S. Y., Lee, H. G., Je, J. G., Jee, Y. and Jeon, Y. J. (2019) Sargassum horneri (Turner) inhibit urban particulate matter-induced inflammation in MH-S lung macrophages via blocking TLRs mediated NF-κB and MAPK activation. Journal of Ethnopharmacology 249, 112363.
[24] Serrano, G. E., Lelutiu, N., Rojas, A., Cochi, S., Shaw, R., Makinson, C. D., Wang, D., FitzGerald, G. A. and Dingledine, R. (2011) Ablation of cyclooxygenase-2 in forebrain neurons is neuroprotective and dampens brain inflammation after status epilepticus. Journal of Neuroscience 31, 14850-14860.
[25] Singh, N., Vijayanti, S. and Saha, L. (2018) Targeting crosstalk between Nuclear factor (erythroid-derived 2)-like 2 and Nuclear factor kappa beta pathway by Nrf2 activator dimethyl fumarate in epileptogenesis. International Journal of Neuroscience 128, 987-994.
[26] Sen, R. and Baltimore, D. (1986) Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46, 705-716.
[27] Sun, Y., Zhao, Y., Chen, D., Zou, W., Gong, J., Yu, D., Gong, D., Wang, D., Xu, H. and Zhao, J. (2008) Inhibitory effect of circular dumb bell decoy ODNs targeting NF-KB on the expression of cyclooxygenase-2 in PC12 cells and hippocampal neurons. Chinese Pharmacological Bulletin 24, 1457-1460.
[28] Takemiya, T., Suzuki, K., Sugiura, H., Yasuda, S., Yamagata, K., Kawakami, Y. and Maru, E. (2003) Inducible brain COX-2 facilitate the recurrence of hippocampal seizures in mouse rapid kindling. Prostaglandins & Other Lipid Mediators 71, 205-216.
[29] Tomita, N., Morishita, R., Tomita, T. and Ogihara, T. (2002) Potential therapeutic applications of decoy oligonucleotides. Current Opinion in Molecular Therapeutics 4, 166-170.
[30] Tomita, N., Morishita, R., Lan, H. Y., Yamamoto, K., Hashizume, M., Notake, M., Toyosawa, K., Fujitani, B., Mu, W., Nikolic-Paterson, D. J., Atkins, R. C., Kaneda, Y., Higaki, J. and Ogihara, T. (2000) In vivo administration of a nuclear transcription of factor-kappa B decoy suppresses experimental crescentic glomerulonephritis. Journal of the American Society of Nephrology 11, 1244-1252.
[31] Voutsinos-Porche, B., Koning, E., Kaplan, H., Ferrandon, A., Guenounou, M., Nehlig, A. and Motte, J. (2004) Temporal patterns of the cerebral inflammatory response in the rat lithium-pilocarpine model of temporal lobe epilepsy. Neurobiology of Disease 17, 385-402
[32] Won, S. J., Ko, H. W., Kim, E. Y., Park, E. C., Huh, K., Jung, N. P., Choi, I., Oh, Y. K., Shin, H. C. and Gwag, B. J. (1999) Nuclear factor kappa B-mediated kainate neurotoxicity in the rat and hamster hippocampus. Neuroscience 94, 83-91.
[1] Zupeng Chen, Cheng Wang, Yajun Liu, Xiaolong Liang, Chao Yang, Xin Zhang, Xu Li. Protective effects of medicinal plant breviscapine on postcerebral hemorrhage in rats[J]. Journal of Integrative Neuroscience, 2020, 19(1): 101-109.
No Suggested Reading articles found!