Please wait a minute...
Journal of Integrative Neuroscience  2019, Vol. 18 Issue (4): 377-385    DOI: 10.31083/j.jin.2019.04.1192
Original Research Previous articles | Next articles
Efficacy of remote limb ischemic conditioning on poststroke cognitive impairment
Xiaofang Feng1, 2, Lihong Huang2, Zongwen Wang3, Luojun Wang2, Xunhao Du2, Qi Wang2, Shouru Xue1, *()
Department of Neurology, the First Affiliated Hospital of Soochow University, Jiangsu Province, 215006, P. R. China
Department of Neurology, Zhabei Central Hospital, Jing'an District, Shanghai 200070, P. R. China
Department of Neurology, Tianyou Hospital, Tongji University, Shanghai 200331, P. R. China
Download:  PDF(456KB)  ( 827 ) Full text   ( 18 )
Export:  BibTeX | EndNote (RIS)      
Abstract  

The impact of remote limb ischemic conditioning on poststroke cognitive impairment was evaluated with 104 first-time patients of noncardiac ischemic stroke. During the acute phase the patients were randomized into control and remote limb ischemic conditioning groups. Both groups received standard treatment, while the remote limb ischemic conditioning group received additional remote limb ischemic conditioning treatment for 6 months. All participants underwent neuropsychological evaluation, transcranial Doppler detection, P300 event-related potential and brachial-ankle pulse wave velocity measurements, and determination of serum intercellular adhesion molecule-1 and endothelin-1 levels both at admission and 6 months poststroke. The number of cases with poststroke cognitive impairment in each group was evaluated 6 months poststroke. No statistically significant difference was found in demographic data or baseline detection indices at admission between the two groups. However, at 6 months poststroke, the remote limb ischemic conditioning group had significantly higher total Montreal Cognitive Assessment score and its domains of visuospatial and executive functioning and attention scores, significantly lower activity of daily living scale score, shorter P300 latency, and higher amplitude compared with the control group. Moreover, the middle cerebral artery, average blood flow velocity was significantly higher, while the middle cerebral artery-pulsation index, basilar artery pulsation index, and the levels of brachial-ankle pulse wave velocity, intercellular adhesion molecule-1, and endothelin-1 were significantly lower in the remote limb ischemic conditioning group compared with the control group. These results demonstrate that remote limb ischemic conditioning causes a significant improvement in cognitive domains, such as visuospatial and executive functioning and attention, and is therefore linked with reduced incidence of poststroke cognitive impairment.

Key words:  Event-related potential P300      stroke      cognitive impairment      ischemic conditioning      remote limb      vascular neurology     
Submitted:  10 October 2019      Accepted:  28 November 2019      Published:  30 December 2019     
Fund: 2018MS11/Foundation of Municipal Health Commission of Jing'an District, Shanghai
*Corresponding Author(s):  Shouru Xue     E-mail:  xueshouru@suda.edu.cn

Cite this article: 

Xiaofang Feng, Lihong Huang, Zongwen Wang, Luojun Wang, Xunhao Du, Qi Wang, Shouru Xue. Efficacy of remote limb ischemic conditioning on poststroke cognitive impairment. Journal of Integrative Neuroscience, 2019, 18(4): 377-385.

URL: 

https://jin.imrpress.com/EN/10.31083/j.jin.2019.04.1192     OR     https://jin.imrpress.com/EN/Y2019/V18/I4/377

Table 1  Comparison of baseline data between control and RLIC group patients
Variable Control group
(n = 44)
RLIC group
(n = 42)
χ2 value or t value P value
Age (year, mean±s) 63.91±7.61 64.16±7.71 -0.150 0.881
Sex (male vs female) 26 : 18 28 : 14 0.528 0.468
BMI (kg/m2) (mean±s) 24.20±2.77 24.29±3.05 -0.627 0.532
Hypertension (number of patients, %) 24 (54.54) 20 (47.62) 0.174 0.688
Diabetes (number of patients, %) 14 (31.82) 14 (33.33) 0.095 0.757
Coronary heart diseases (number of patients, %) 12 (28.57) 13 (30.95) 0.056 0.813
Smoking (number of patients, %) 20 (45.45) 22 (52.38) 0.413 0.521
Drinking (number of patients, %) 12 (27.17) 10 (23.81) 0.135 0.713
Duration of education (year, mean±s) 8.80±3.81 8.50±3.78 0.361 0.719
LDL-C (mmol/L, mean±s) 3.80±0.64 3.72±0.74 0.527 0.600
Homocysteine (μmol/L, mean±s) 17.23±2.66 17.68±3.13 -0.708 0.481
Uric acid (mmol/L, mean±s) 366.16±69.88 356.69±60.38 0.671 0.504
Site of cerebral infarct
Anterior vs posterior circulation
Anterior circulation (left vs right)

30 : 14
16 : 14

27 : 15
14 : 13

0.146
0.153

0.702
0.696
Cerebral infarct volume (cm3, mean±s) 4.69±0.32 4.61± 0.39 1.001 0.089
Time of stroke onset (day, mean±s) 1.86±1.08 1.95±1.09 -0.380 0.705
NIHSS score (point, mean±s) 4.07±1.69 4.19±1.49 -0.356 0.723
Table 2  Comparisons of MoCA and ADL scores between control and RLIC group patients at admission and at6 months poststroke (point; mean±s)
Item At admission At 6 months poststroke
Control group RLIC group t value P value Control group RLIC group t value P value
MoCA 25.16±2.61 24.86±2.55 0.543 0.589 23.82±2.61 25.02±1.97 -2.411 0.018
ADL 23.91±3.16 24.98±4.26 -1.324 0.189 23.80±2.28 20.86±4.17 2.603 0.011
Table 3  Comparison of each MoCA domain score between control and RLIC group patients at admission and 6 months poststroke (point; mean±s)
Item At admission At 6 months poststroke
Control group RLIC group t value P value Control group RLIC group t value P value
Visuospatial and executive functioning 4.35±0.97 4.28±0.67 1.441 0.749 3.63±1.01 4.23±0.73 -2.201 0.023
Naming 2.21±0.70 2.17±0.50 1.042 0.803 2.19±0.78 2.17±0.40 0.870 0.589
Attention 5.27±0.54 5.20±0.93 0.772 0.670 4.62±0.41 5.31±0.91 -1.901 0.031
Language 2.30±0.39 2.27±0.35 0.782 0.595 2.35±0.56 2.32±0.57 0.677 0.809
Abstract 1.61±0.27 1.60±0.23 0.353 0.445 1.59±0.72 1.60±0.33 0.634 0.845
Delayed recall 4.38±0.35 4.25±0.56 0.428 0.573 4.41±0.39 4.42±0.65 -0.301 0.940
Orientation 5.04±0.28 5.09±1.01 -0.509 0.665 5.03±0.87 4.97±1.09 0.234 0.378
Figure 1.  Each MoCA domain score at 6 months poststroke (*indicates P < 0.05): Scores of visuospatial and executive functioning were significantly higher in the RLIC group compared with the Con group (P = 0.023), Scores of attention were significantly higher in the RLIC group compared with the Con group (P = 0.031).

Table 4  Comparison of P300 event-related potential latency (ms) and amplitude (μV) between control and RLIC group patients at admission and 6 months poststroke
Item At admission At 6 months poststroke
Control group RLIC group t value P value Control group RLIC group t value P value
P300 latency (ms, mean±s) 369.34±39.26 375.47±45.93 -0.723 0.726 373.56±64.72 331.70±46.28 0.174 0.032
P300 amplitude
(μV, mean±s)
6.87±3.94 7.04±5.45 -0.557 0.835 6.75±1.98 8.52±5.27 -0.152 0.027
Figure 2.  P300 latency (ms) and amplitude (μV) at 6 months poststroke (* indicates P < 0.05): The P300 latency was shorter in the RLIC group than in the Con group (P = 0.032), The amplitude was higher in the RLIC group than in the Con group (P = 0.027).

Table 5  Comparison of blood flow indices, baPWV, and levels of ICAM-1 and ET-1 between control and RLIC group patients at admission and 6 months poststroke
Item At admission At 6 months poststroke
control group RLIC group t value P value control group RLIC group t value P value
TCD
MCA-Vm (cm/s)
MCA-PI
ACA-Vm (cm/s)
ACA-PI
BA-Vm (cm/s)
BA-PI
72.37±19.13 70.80±17.25 0.424 0.482 66.56±10.63 80.39±9.94 -1.159 0.035
1.19±1.13 1.17±0.65 0.562 0.745 1.17±0.90 1.02±0.67 1.327 0.019
53.56±10.81 55.34±9.01 -0.433 0.621 54.01±8.40 57.45±9.54 -0.421 0.763
1.15±0.93 1.13±0.75 0.372 0.445 1.14±0.89 1.11±0.76 0.572 0.865
45.73±7.43 47.25±10.27 -0.254 0.649 44.34±7.45 46.91±7.72 0.563 0.591
1.10±0.49 1.08±0.53 0.541 0.772 1.11±0.75 0.97±0.68 1.020 0.021
baPWV (m/s) 18.54±4.55 18.31±5.03 1.025 0.931 17.51±5.03 15.35±4.70 1.125 0.033
ICAM-1 (ng/L) 323.50±34.12 327.49±42.30 -1.403 0.765 259.60±28.38 174.60±20.02 1.520 0.017
ET-1 (ng/L) 81.42±12.47 77.96±14.01 0.943 0.655 50.17±7.83 36.04±4.91 1.631 0.032
Figure 3.  Blood flow indices at 6 months poststroke (* indicate P < 0.05): MCA-Vm was significantly higher in the RLIC group than in the Con group (P = 0.035), while both MCA-PI (P = 0.019) and BA-PI (P = 0.021) were significantly lower in the RLIC group than in the Con group.

[1] Armentero, M. T., Levandis, G., Bazzini, E., Cerri, S., Ghezzi, C. and Blandini, F. (2011) Adhesion molecules as potential targets for neuroprotection in a rodent model of Parkinson's disease. Neurobiology of Disease 43, 663-668.
doi: 10.1016/j.nbd.2011.05.017
[2] Blackburn, D. J., Bafadhel, L., Randall, M. and Harkness, K. A. (2013) Cognitive screening in the acute stroke setting. Age Ageing 42, 113-116.
doi: 10.1093/ageing/afs116 pmid: 22923608
[3] Briyal, S., Philip, T. and Gulati, A. (2011) Endothelin-A receptor antagonists prevent amyloid-β-induced increase in ETA receptor expression, oxidative sstress, and cognitive impairment. Journal of Alzheimer’s Disease 23, 491-503.
[4] Brandli, A. (2015) Remote limb ischemic preconditioning: a neuroprotective technique in rodents. Journal of Visualized Experiments, e52213.
doi: 10.3791/60308 pmid: 31905190
[5] Cavalcante, J. L., Lima, J. A., Redheuil, A. and Al-Mallah, M. H. (2011) Aortic stiffness: current understanding and future directions. Journal of the American College of Cardiology 57, 1511-1522.
doi: 10.1016/j.jacc.2010.12.017
[6] Cheng, C. Y., Su, S. Y., Tang, N. Y., Ho, T. Y., Chiang, S. Y. and Hsieh, C. L. (2008) Ferulic acid provides neuroprotection against oxidative stress-related apoptosis after cerebral ischemia/reperfusion injury by inhibiting ICAM-1 mRNA expression in rats. Brain Research 1209, 136-150.
doi: 10.1016/j.brainres.2008.02.090 pmid: 18400211
[7] Cumming, T. B., Churilov, L., Linden, T. and Bernhardt, J. (2013) Montreal cognitive assessment and mini-mental state examination are both valid cognitive tools in stroke. Acta Neurologica Scandinavica 128, 122-129.
doi: 10.1111/ane.12084
[8] Deweese, J. A., May, A. G., Lipchik, E. O. and Rob, C. G. (1970) Anatomic and hemodynamic correlations in carotid artery stenosis. Stroke 1, 149-157.
doi: 10.1161/01.str.1.3.149 pmid: 5522912
[9] England, T. J., Hedstrom, A., O'Sullivan, S., Donnelly, R., Barrett, D. A., Sarmad, S., Sprigg, N. and Bath, P. (2017) RECAST (Remote ischemic conditioning after stroke trial): a pilot randomized placebo controlled Phase II trial in acute ischemic Stroke. Stroke 48, 1412-1415.
doi: 10.1161/STROKEAHA.116.016429 pmid: 28265014
[10] Fabrizio, V. and Sara, M. (2011) The use of auditory event-related potentials in Alzheimer's disease diagnosis. International Journal of Alzheimer's Disease 2011, 1-7.
[11] Fang, W., Geng, X., Deng, Y., Li, Y., Shang, E., Cen, J. and Lv, P. (2011) Platelet activating factor induces blood brain barrier permeability alteration in vitro. Journal of Neuroimmunology 230, 42-47.
doi: 10.1016/j.jneuroim.2010.08.015
[12] Gonzalez, N. R., Connolly, M., Dusick, J. R., Bhakta, H. and Vespa, P. (2014) Phase I clinical trial for the feasibility and safety of remote ischemic conditioning for aneurysmal subarachnoid hemorrhage. Neurosurgery 75, 590-598.
doi: 10.1227/NEU.0000000000000514
[13] He, Z., Nan, X. and Qi, S. (2017) Remote ischemic preconditioning improves the cognitive function of elderly patients following colon surgery: A randomized clinical trial. Medicine 96, e6719.
doi: 10.1097/MD.0000000000006719 pmid: 28445286
[14] Hess, D. C., Blauenfeldt, R. A., Andersen, G., Hougaard, K. D., Hoda, M. N., Ding, Y. and Ji, X. (2015) Remote ischaemic conditioning-a new paradigm of self-protection in the brain. Nature Reviews Neurology 11, 698-710.
doi: 10.1038/nrneurol.2015.223 pmid: 26585977
[15] Hougaard, K. D., Hjort, N., Zeidler, D., Sørensen, L., Nørgaard, A., Thomsen, R. B., Jonsdottir, K., Mouridsen, K., Hansen, T. M., Cho, T. H., Nielsen, T. T., Bøtker, H. E., Østergaard, L. and Andersen, G. (2013) Remote ischemic perconditioning in thrombolysed stroke patients: randomized study of activating endogenous neuroprotection-design and MRI measurements. International Journal of Stroke 8, 141-146.
doi: 10.1111/j.1747-4949.2012.00786.x pmid: 22463392
[16] Hudetz, J. A., Patterson, K. M., Iqbal, Z., Gandhi, S. D. and Pagel, P. S. (2015) Remote ischemic preconditioning prevents deterioration of short-term postoperative cognitive function after cardiac surgery using cardiopulmonary bypass: results of a pilot investigation. Journal of Cardiothoracic and Vascular Anesthesia 29, 382-388.
doi: 10.1053/j.jvca.2014.07.012 pmid: 25440646
[17] Jin, X. L., Li, P. F., Zhang, C. B., Wu, J. P., Feng, X. L., Zhang, Y. and Shen, M. H. (2016) Electroacupuncture alleviates cerebral ischemia and reperfusion injury via modulation of the ERK1/2 signaling pathway. Neural Regeneration Research 11, 1090-1098.
doi: 10.4103/1673-5374.187041 pmid: 27630691
[18] Khan, M. B., Hoda, M. N., Vaibhav, K., Giri, S., Wang, P., Waller, J. L., Ergul, A., Dhandapani, K. M., Fagan, S. C. and Hess, D., C. (2015) Remote ischemic postconditioning: harnessing endogenous protection in a murine model of vascular cognitive impairment. Translational Stroke Research 6, 69-77.
doi: 10.1007/s12975-014-0374-6 pmid: 25351177
[19] Koch, S., Katsnelson, M., Dong, C. and Perez-Pinzon, M. (2011) Remote ischemic limb preconditioning after subarachnoid hemorrhage:a phase Ib study of safety and feasibility. Stroke 42, 1387-1391.
doi: 10.1161/STROKEAHA.110.605840
[20] Kwan, A. L., Lin, C.L., Chang, C.Z,, Winardi, D., Yen, C. P., Wu, S.C., Lee, K., S., Kassell, N., F., Howng, S., L., Savage, P. and Jeng, A., Y. (2002) Oral administration of an inhibitor of endothelin-converting enzyme attenuates cerebral vasospasm following experimental subarachnoid haemorrhage in rabbits. Clinical Science 103, 414S-417S.
doi: 10.1042/CS103S414S pmid: 12193135
[21] Masaki, T., Kimura, S., Yanagisawa, M. and Goto, K. (1991) Molecular and cellular mechanism of endothelin regulation. Implications for vascular function. Circulation 84, 1457-1468.
doi: 10.1161/01.cir.84.4.1457 pmid: 1655302
[22] Meng, R., Asmaro, K., Meng, L., Liu, Y., Ma, C., Xi, C., Li, G., Ren, C., Luo, Y., Ling, F., Jia, J., Hua, Y., Wang, X., Ding, Y., Lo, E. and Ji, X. (2012) Upper limb ischemic preconditioning prevents recurrent stroke in intracranial arterial stenosis. Neurology 79, 1853-1861.
doi: 10.1212/WNL.0b013e318271f76a
[23] Meng, R., Ding, Y., Asmaro, K., Brogan, D., Meng, L., Sui, M., Shi, J., Duan, Y., Sun, Z., Yu, Y., Jia, J. and Ji, X. (2015) Ischemic conditioning is safe and effective for octo- and nonagenarians in stroke prevention and treatment. Neurotherapeutics 12, 667-677.
doi: 10.1007/s13311-015-0358-6 pmid: 25956401
[24] Michiels, C. (2003) Endothelial cell functions. Journal of Cellular Physiology 196, 430-443.
doi: 10.1002/jcp.10333 pmid: 12891700
[25] Najjar, S. S., Scuteri, A., Shetty, V., Wright, J. G., Muller, D. C., Fleg, J. L., Fleg, Jerome L., Spurgeon, H. P., Ferrucci, L. and Lakatta, E. G. (2008) Pulse wave velocity is an independent predictor of the longitudinal increase in systolic blood pressure and of incident hypertension in the baltimore longitudinal study of aging. Journal of the American College of Cardiology 51, 1377-1383.
doi: 10.1016/j.jacc.2007.10.065
[26] Nikkola, E., Laiwalla, A., Ko, A., Alvarez, M., Connolly, M., Ooi, Y. C., Hsu, W., Bui, A., Pajukanta, P. and Gonzalez, N. R. (2015) Remote ischemic conditioning alters methylation and expression of cell cycle genes in aneurysmal subarachnoid Hemorrhage. Stroke 46, 2445-2451.
doi: 10.1161/STROKEAHA.115.009618 pmid: 26251247
[27] O'Sullivan, C., Duggan, J., Lyons, S., Thornton, J., Lee, M. and O'Brien, E. (2003) Hypertensive target-organ damage in the very elderly. Hypertension 42, 130-135.
doi: 10.1161/01.HYP.0000084050.73533.C5 pmid: 12860837
[28] Pan, J., Li, X. and Peng, Y. (2016) Remote ischemic conditioning for acute ischemic stroke: dawn in the darkness. Reviews in the Neurosciences 27, 501-510.
doi: 10.1515/revneuro-2015-0043 pmid: 26812782
[29] Parra, M. A., Ascencio, L. L., Urquina, H. F., Manes, F. and Ibáñez, A. M. (2012) P300 and neuropsychological assessment in mild cognitive impairment and Alzheimer dementia. Frontiers in Neurology 3, 172.
doi: 10.3389/fneur.2012.00172 pmid: 23227021
[30] Pasi, M., Poggesi, A., Salvadori, E. and Pantoni, L. (2012) Post-stroke dementia and cognitive impairment. Frontiers of Neurology and Neuroscience 30, 65-69.
doi: 10.1159/000333412 pmid: 22377866
[31] Pendlebury, S. T. and Rothwell, P. M. (2009) Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: a systematic review and meta-analysis. The Lancet Neurology 8, 1006-1018.
doi: 10.1016/S1474-4422(09)70236-4 pmid: 19782001
[32] Qu, Y., Zhuo, L., Li, N., Hu, Y., Chen, W., & Zhou, Y., Wang, J., Tao, Q., Hu, J., Nie, X. and Zhan, S. (2015) Prevalence of post-stroke cognitive impairment in china: a community-based, cross-sectional study. Plos One 10, e0122864.
doi: 10.1371/journal.pone.0122864 pmid: 25874998
[33] Rothwell, P. M., Howard, S. C., Dolan, E., O'Brien, E., Dobson, J. E., Dahlöf, B., Sever, P. S. and Poulter, N. R. (2010) Prognostic significance of visit-to-visit variability, maximum systolic blood pressure and episodic hypertension. Lancet 375, 895-905.
doi: 10.1016/S0140-6736(10)60308-X pmid: 20226988
[34] Sabayan, B., Wijsman, L. W., Foster-Dingley, J. C., Stott, D. J., Ford, I., Buckley, B. M., Sattar, N., Jukema, J. W., van Osch, M. J., van der Grond, J., van Buchem, M. A., Westendorp, R. G., de Craen, A. J. and Mooijaart, S. P. (2013) Association of visit-to-visit variability in blood pressure with cognitive function in old age: prospective cohort study. BMJ 347, f4600.
doi: 10.1136/bmj.f4600 pmid: 23900315
[35] Salido, E. M., Dorfman, D., Bordone, M., Chianelli, M., González Fleitas, M. F. and Rosenstein, R. E. (2013) Global and ocular hypothermic preconditioning protect the rat retina from ischemic damage. Plos One 8, e61656.
doi: 10.1371/journal.pone.0061656 pmid: 23626711
[36] Selnes, O. A. and Vinters, H. V. (2006) Vascular cognitive impairment. Nature Clinical Practice. Neurology 2, 538-547.
doi: 10.1038/ncpneuro0294 pmid: 16990827
[37] Shen, A., Yang, J., Gu, Y., Zhou, D., Sun, L., Qin, Y., Chen, J., Wang, P., Xiao, F., Zhang, L. and Cheng, C. (2008) Lipopolysaccharide-evoked activation of p38 and JNK leads to an increase in ICAM-1 expression in Schwann cells of sciatic nerves. The FEBS Journal 275, 4343-4353.
doi: 10.1111/j.1742-4658.2008.06577.x pmid: 18657190
[38] Sun, J. H., Tan, L. and Yu, J. T. (2014) Post-stroke cognitive impairment: epidemiology, mechanisms and management. Annals of Translational Medicine 2, 80.
doi: 10.3978/j.issn.2305-5839.2014.08.05 pmid: 25333055
[39] Tidball, A. M., Neely, M. D., Chamberlin, R., Aboud, A. A., Kumar, K. K., Han, B., Bryan, M. R., Aschner, M., Ess, K. C. and Bowman, A. B. (2016) Genomic instability associated with p53 knockdown in the generation of huntington’s disease human induced pluripotent stem cells. Plos One 11, e0150372.
doi: 10.1371/journal.pone.0150372 pmid: 26982737
[40] Wang, H., Zhang, Q., Xu, Y., Bian, H., Si, C., Yan, Z. and Zhu, M. (2017a) Remote ischemic conditioning improves cognitive function during cerebral vascular injury through the induction of autophagy. Current Neurovascular Research 14, 250-257.
doi: 10.2174/1567202614666170619081419 pmid: 28625130
[41] Wang, Y., Meng, R., Song, H., Liu, G., Hua, Y., Cui, D,, Zheng, L., Feng, W., Liebeskind, D. S., Fisher, M. and Ji, X. (2017b) Remote ischemic conditioning may improve outcomes of patients with cerebral small-vessel disease. Stroke 48, 3064-3072.
doi: 10.1161/STROKEAHA.117.017691 pmid: 29042490
[42] Xu, T., Gong, Z., Zhu, W. Z., Wang, J. F., Li, B., Chen, F. and Deng, X. (2011) Remote ischemic preconditioning protects neurocognitive function of rats following cerebral hypoperfusion. Medical Science Monitor 17, BR299-BR304.
doi: 10.12659/msm.882152 pmid: 22179483
[43] Yoshida, S., Aihara, K. I., Azuma, H., Uemoto, R., Sumitomo-Ueda, Y., Yagi, S., Ikeda, Y., Iwase, T., Nishio, S., Kawano, H., Miki, J., Yamada, H., Hirata, Y., Akaike, M., Sata, M. and Matsumoto, T. (2010) Dehydroepiandrosterone sulfate is inversely associated with sex-dependent diverse carotid atherosclerosis regardless of endothelial function. Atherosclerosis 212, 310-315.
doi: 10.1016/j.atherosclerosis.2010.05.011 pmid: 20627295
[44] Yu, J., Li, J. and Huang, X. (2012) The Beijing version of the montreal cognitive assessment as a brief screening tool for mild cognitive impairment: a community-based study. BMC Psychiatry 12, 156.
doi: 10.1186/1471-244X-12-156 pmid: 23009126
[45] Yu, K. H. Cho, S. J., Oh, M. S., Jung, S., Lee, J. H., Shin, J. H., Koh, I. S., Cha, J. K., Park, J. M., Bae, H. J., Kang, Y. and Lee, B. C. (2013) Cognitive impairment evaluated with vascular cognitive impairment harmonization standards in a multicenter prospective stroke cohort in korea. Stroke 44, 786.
doi: 10.1161/STROKEAHA.112.668343 pmid: 23271507
[46] Zhao, L., Barlinn, K., Sharma, V. K., Tsivgoulis, G., Cava, L. F., Vasdekis, S. N., Teoh, H. L., Triantafyllou, N., Chan, B. P.L., Sharma, A., Voumvourakis, K., Stamboulis, E., Saqqur, M., Harrigan, M. R., Albright, K. C. and Alexandrov, A. V. (2011) Velocity criteria for intracranial stenosis revisited: aninternational multicenter study of transcranial Doppler and digital subtraction angiography. Stroke 42, 3429-3434.
doi: 10.1161/STROKEAHA.111.621235
[1] Yingxia Yang, Lichao Ye, Ruoting Lin, Huasong Lin, Ting Tang, Yafang Chen, Jinying Zhang, Lingxing Wang. Neuropsychological and neuroimaging assessments of early cognitive impairment in patients after mild ischemic stroke and transient ischemic attack[J]. Journal of Integrative Neuroscience, 2020, 19(2): 313-319.
[2] Lu Yu, Jie Tao, Qing Zhao, Chuan Xu, Qiujuan Zhang. Confirmation of potential neuroprotective effects of natural bioactive compounds from traditional medicinal herbs in cerebral ischemia treatment[J]. Journal of Integrative Neuroscience, 2020, 19(2): 373-384.
[3] Jun Young Kim, Mathieu Boudier-Revéret, Min Cheol Chang. Can repetitive transcranial magnetic stimulation enhance motor outcomes in cerebral infarct patients?[J]. Journal of Integrative Neuroscience, 2020, 19(1): 119-123.
[4] Qiong Zhou, Yangfang An, Yonghong Tang. Long noncoding RNA-regulator of reprogramming alleviates hypoxia-induced cerebral injury in mice model and human via modulating apoptosis complexes[J]. Journal of Integrative Neuroscience, 2019, 18(4): 431-437.
[5] Dai Han, Shenxun Shi, Hong Luo. The therapeutic effect of quetiapine on cognitive impairment associated with 5-HT1A presynaptic receptor involved schizophrenia[J]. Journal of Integrative Neuroscience, 2019, 18(3): 245-251.
[6] Yun Luo, Zheng Li. Retrospecting atrial fibrillation and stroke severity: impact onset time of acute ischemic stroke[J]. Journal of Integrative Neuroscience, 2019, 18(2): 187-191.
[7] Ning Zhao, Jingna Zhang, Mingguo Qiu, Chunrong Wang, Yun Xiang, Hui Wang, Jingwen Xie, Shu Liu, Jing Wu. Scalp acupuncture plus low-frequency rTMS promotes repair of brain white matter tracts in stroke patients: A DTI study[J]. Journal of Integrative Neuroscience, 2018, 17(1): 61-69.
No Suggested Reading articles found!