Please wait a minute...
Journal of Integrative Neuroscience  2019, Vol. 18 Issue (3): 245-251    DOI: 10.31083/j.jin.2019.03.186
Original Research Previous articles | Next articles
The therapeutic effect of quetiapine on cognitive impairment associated with 5-HT1A presynaptic receptor involved schizophrenia
Dai Han1, 2, 3, Shenxun Shi4, Hong Luo3, *()
1 Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
2 Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, 311121, P. R. China
3 Psychiatry Department, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
4 Psychiatry Department, Huashan Hospital of Fudan University, Shanghai, 200090, P. R. China
Download:  PDF(501KB)  ( 878 ) Full text   ( 46 )
Export:  BibTeX | EndNote (RIS)      
Abstract  

The cognitive impairment associated with schizophrenia is highly prevalent and affects the overall functioning of subjects. The stimulation of the serotonin 1A receptor is a primary characteristic of some atypical antipsychotic drugs. We measured the levels of cognitive impairment using the Morris water maze test and protein kinase A activity in hippocampal neurons on presynaptic and postsynaptic serotonin 1A receptors to investigate the effect of dizocilpine-induced cognitive impairment associated with atypical antipsychotic drugs in rats treated by quetiapine alone or combined with WAY100635/tandospirone. The results of the Morris water maze test presented evidence that quetiapine alone alleviated the cognitive impairment associated with atypical antipsychotic drugs induced by dizocilpine. However, quetiapine plus WAY100635 induced no improvement of cognitive impairment associated with atypical antipsychotic drugs. The results of protein kinase A assay suggested that neither quetiapine alone nor in combination with tandospirone, but not quetiapine plus WAY100635, raised protein kinase A activity in hippocampus neurons. The present study demonstrated the key role of presynaptic serotonin 1A receptors on the therapeutic effect of quetiapine on cognitive impairment associated with atypical antipsychotic drugs. Moreover, that protein kinase A activity in hippocampal cells is involved in the mechanism of quetiapine's effect on cognitive impairment associated with atypical antipsychotic drugs.

Key words:  Cognitive impairment      schizophrenia      quetiapine      5-HT1A presynaptic receptors      5-HT1A postsynaptic receptors      antipsychotic drugs     
Submitted:  10 June 2019      Accepted:  21 August 2019      Published:  30 September 2019     
Fund: 
  • 201708330165/Scholarship Council
  • LQ14H0900014/Natural Science Foundation of Zhejiang Province
*Corresponding Author(s):  Hong Luo     E-mail:  luohong@hznu.edu.cn

Cite this article: 

Dai Han, Shenxun Shi, Hong Luo. The therapeutic effect of quetiapine on cognitive impairment associated with 5-HT1A presynaptic receptor involved schizophrenia. Journal of Integrative Neuroscience, 2019, 18(3): 245-251.

URL: 

https://jin.imrpress.com/EN/10.31083/j.jin.2019.03.186     OR     https://jin.imrpress.com/EN/Y2019/V18/I3/245

[1] Ago, Y., Koyama, Y., Baba, A. and Matsuda, T. (2003) Regulation by 5-HT1A receptors of the in vivo release of 5-HT and DA in mouse frontal cortex. Neuropharmacology 45, 1050-1056.
[2] Al Rahim, M., Nakajima, A., Saigusa, D., Tetsu, N., Maruyama, Y., Shibuya, M., Yamakoshi, H., Tomioka, Y., Iwabuchi, Y., Ohizumi, Y. and Yamakuni, T. (2009) 4'-Demethylnobiletin, a bioactive metabolite of nobiletin enhancing PKA/ERK/CREB signaling, rescues learning impairment associated with NMDA receptor antagonism via stimulation of the ERK cascade. Biochemistry 48, 7713-2771.
[3] Assie, M. B., Lomenech, H., Ravailhe, V., Faucillon, V. and Newman-Tancredi, A. (2006) Rapid desensitization of somatodendritic 5-HT1A receptors by chronic administration of the high-efficacy 5-HT1A agonist, F13714: a microdialysis study in the rat. British Journal of Pharmacology 149, 170-178.
[4] Beraki, S., Diaz-Heijtz, R., Tai, F. and Ogren, S. O. (2009) Effects of repeated treatment of phencyclidine on cognition and gene expression in C57BL/6 mice. International Journal of Neuropsychopharmacology 12, 243-255.
[5] Borg, J., Andree, B., Lundberg, J., Halldin, C. and Farde, L. (2006) Search for correlations between serotonin 5-HT1A receptor expression and cognitive functions--a strategy in translational psychopharmacology. Psychopharmacology (Berl) 185, 389-394.
[6] Bubenikova-Valesova, V., Svoboda, J., Horacek, J. and Sumiyoshi, T. (2010) Effect of tandospirone, a serotonin-1A receptor partial agonist, on information processing and locomotion in dizocilpine-treated rats. Psychopharmacology (Berl) 212, 267-276.
[7] Carli, M., Balducci, C., Millan, M. J., Bonalumi, P. and Samanin, R. (1999) S 15535, a benzodioxopiperazine acting as presynaptic agonist and postsynaptic 5-HT1A receptor antagonist, prevents the impairment of spatial learning caused by intrahippocampal scopolamine. British Journal of Pharmacology 128, 1207-1214.
[8] Carli, M., Balducci, C. and Samanin, R. (2001) Stimulation of 5-HT(1A) receptors in the dorsal raphe ameliorates the impairment of spatial learning caused by intrahippocampal 7-chloro-kynurenic acid in naive and pretrained rats. Psychopharmacology (Berl) 158, 39-47.
[9] Carli, M., Bonalumi, P. and Samanin, R. (1998) Stimulation of 5-HT1A receptors in the dorsal raphe reverses the impairment of spatial learning caused by intrahippocampal scopolamine in rats. European Journal of Neuroscience 10, 221-230.
[10] Edagawa, Y., Saito, H. and Abe, K. (1998) 5-HT1A receptor-mediated inhibition of long-term potentiation in rat visual cortex. European Journal of Pharmacology 349, 221-224.
[11] Giordano, G., Sanchez-Perez, A. M., Montoliu, C., Berezney, R., Malyavantham, K., Costa, L. G., Calvete, J. J. and Felipo, V. (2005) Activation of NMDA receptors induces protein kinase A-mediated phosphorylation and degradation of matrin 3. Blocking these effects prevents NMDA-induced neuronal death. Journal of Neurochemistry 94, 808-818.
[12] Harder, J. A., Maclean, C. J., Alder, J. T., Francis, P. T. and Ridley, R. M. (1996) The 5-HT1A antagonist, WAY 100635, ameliorates the cognitive impairment induced by fornix transection in the marmoset. Psychopharmacology (Berl) 127, 245-254.
[13] Harvey, P. D. (2006) Cognitive and functional effects of atypical antipsychotic medications. The Journal of Clinical Psychiatry 67, e13.
[14] Horiguchi, M., Hannaway, K. E., Adelekun, A. E., Jayathilake, K. and Meltzer, H. Y. (2012) Prevention of the phencyclidine-induced impairment in novel object recognition in female rats by co-administration of lurasidone or tandospirone, a 5-HT(1A) partial agonist. Neuropsychopharmacology 37, 2175-2183.
[15] Huang, X., Yang, J., Yang, S., Cao, S., Qin, D., Zhou, Y., Li, X., Ye, Y. and Wu, J. (2017) Role of tandospirone, a 5-HT1A receptor partial agonist, in the treatment of central nervous system disorders and the underlying mechanisms. Oncotarget 8, 102705-102720.
[16] Ichikawa, J., Li, Z., Dai, J. and Meltzer, H. Y. (2002) Atypical antipsychotic drugs, quetiapine, iloperidone, and melperone, preferentially increase dopamine and acetylcholine release in rat medial prefrontal cortex: role of 5-HT1A receptor agonism. Brain Research 956, 349-357.
[17] Kishimoto, K., Koyama, S. and Akaike, N. (2000) Presynaptic modulation of synaptic gamma-aminobutyric acid transmission by tandospirone in rat basolateral amygdala. European Journal of Pharmacology 407, 257-265.
[18] Kusumi, I., Boku, S. and Takahashi, Y. (2015) Psychopharmacology of atypical antipsychotic drugs: From the receptor binding profile to neuroprotection and neurogenesis. Psychiatry and Clinical Neurosciences 69, 243-258.
[19] Madjid, N., Tottie, E. E., Luttgen, M., Meister, B., Sandin, J., Kuzmin, A., Stiedl, O. and Ogren, S. O. (2006) 5-Hydroxytryptamine 1A receptor blockade facilitates aversive learning in mice: interactions with cholinergic and glutamatergic mechanisms. Journal of Pharmacology and Experimental Therapeutics 316, 581-591.
[20] McGurk, S. R., Moriarty, P. J., Harvey, P. D., Parrella, M., White, L., Friedman, J. and Davis, K. L. (2000) Relationship of cognitive functioning, adaptive life skills, and negative symptom severity in poor-outcome geriatric schizophrenia patients. Journal of Neuropsychiatry and Clinical Neurosciences 12, 257-264.
[21] Meltzer, H. Y. and Massey, B. W. (2011) The role of serotonin receptors in the action of atypical antipsychotic drugs. Current Opinion in Pharmacology 11, 59-67.
[22] Mendelson, S. D., Quartermain, D., Francisco, T. and Shemer, A. (1993) 5-HT1A receptor agonists induce anterograde amnesia in mice through a postsynaptic mechanism. European Journal of Pharmacology 236, 177-182.
[23] Millan, M. J., Rivet, J. M., Canton, H., Lejeune, F., Gobert, A., Widdowson, P., Bervoets, K., Brocco, M. and Peglion, J. L. (1993) S 15535: a highly selective benzodioxopiperazine 5-HT1A receptor ligand which acts as an agonist and an antagonist at presynaptic and postsynaptic sites respectively. European Journal of Pharmacology 230, 99-102.
[24] Nagai, T., Murai, R., Matsui, K., Kamei, H., Noda, Y., Furukawa, H. and Nabeshima, T. (2009) Aripiprazole ameliorates phencyclidine-induced impairment of recognition memory through dopamine D1 and serotonin 5-HT1A receptors. Psychopharmacology (Berl) 202, 315-328.
[25] Nikiforuk, A. (2013) Quetiapine ameliorates stress-induced cognitive inflexibility in rats. Neuropharmacology 64, 357-364.
[26] Ogren, S. O., Eriksson, T. M., Elvander-Tottie, E., D'Addario, C., Ekstrom, J. C., Svenningsson, P., Meister, B., Kehr, J. and Stiedl, O. (2008) The role of 5-HT(1A) receptors in learning and memory. Behavioural Brain Rresearch 195, 54-77.
[27] Ohno, Y. (2010) New insight into the therapeutic role of 5-HT1A receptors in central nervous system disorders. Central Nervous System Agents in Medicinal Chemistry 10, 148-157.
[28] Olsen, A. S., Sozda, C. N., Cheng, J. P., Hoffman, A. N. and Kline, A. E. (2012) Traumatic brain injury-induced cognitive and histological deficits are attenuated by delayed and chronic treatment with the 5-HT1A-receptor agonist buspirone. Journal of Neurotrauma 29, 1898-1907.
[29] Polter, A. M. and Li, X. (2010) 5-HT1A receptor-regulated signal transduction pathways in brain. Cellular Signalling 22, 1406-1412.
[30] Sato, M., Ago, Y., Koda, K., Nakamura, S., Kawasaki, T., Baba, A. and Matsuda, T. (2007) Role of postsynaptic serotonin1A receptors in risperidone-induced increase in acetylcholine release in rat prefrontal cortex. European Journal of Pharmacology 559, 155-160.
[31] Schechter, L. E., Dawson, L. A. and Harder, J. A. (2002) The potential utility of 5-HT1A receptor antagonists in the treatment of cognitive dysfunction associated with Alzheimer s disease. Current Pharmaceutical Design 8, 139-145.
[32] Sharma, T. (1999) Cognitive effects of conventional and atypical antipsychotics in schizophrenia. British Journal of Psychiatry 38, 44-51.
[33] Snigdha, S., Idris, N., Grayson, B., Shahid, M. and Neill, J. C. (2011) Asenapine improves phencyclidine-induced object recognition deficits in the rat: evidence for engagement of a dopamine D1 receptor mechanism. Psychopharmacology (Berl) 214, 843-853.
[34] Sumiyoshi, T., Matsui, M., Nohara, S., Yamashita, I., Kurachi, M., Sumiyoshi, C., Jayathilake, K. and Meltzer, H. Y. (2001) Enhancement of cognitive performance in schizophrenia by addition of tandospirone to neuroleptic treatment. American Journal of Psychiatry 158, 1722-1755.
[35] Tachibana, K., Matsumoto, M., Togashi, H., Kojima, T., Morimoto, Y., Kemmotsu, O. and Yoshioka, M. (2004) Milnacipran, a serotonin and noradrenaline reuptake inhibitor, suppresses long-term potentiation in the rat hippocampal CA1 field via 5-HT1A receptors and alpha 1-adrenoceptors. Neuroscience Letters 357, 91-94.
[36] Takada, Y., Urano, T., Malyszko, J. and Takada, A. (1996) Changes in serotonergic measures in whole blood and various brain regions of rats administered with the 5-HT1A agonist tandospirone and/or exposed to electric foot-shock. Brain Research Bulletin 40, 51-55.
[37] Uehara, T., Matsuoka, T. and Sumiyoshi, T. (2014) Tandospirone, a 5-HT1A partial agonist, ameliorates aberrant lactate production in the prefrontal cortex of rats exposed to blockade of N-methy-D-aspartate receptors; Toward the therapeutics of cognitive impairment of schizophrenia. Frontiers in Behavioral Neuroscience 8, 291.
[38] Urben, S., Baumann, P., Barcellona, S., Hafil, M., Preuss, U., Peter-Favre, C., Clarke, S., Halfon, O. and Holzer, L. (2012) Cognitive efficacy of quetiapine in early-onset first-episode psychosis: a 12-week open label trial. Psychiatric Quarterly 83, 311-324.
[39] Van den Eynde, F., De Saedeleer, S., Naudts, K., Day, J., Vogels, C., van Heeringen, C. and Audenaert, K. (2009) Quetiapine treatment and improved cognitive functioning in borderline personality disorder. Human Psychopharmacology 24, 646-649.
[40] Yasuno, F. (2004) Hippocampal serotonin 1A receptor and memory function. Seishin Shinkeigaku Zasshi 106, 1314-1322. (In Japanese)
[41] Zhu, D. Y., Lau, L., Liu, S. H., Wei, J. S. and Lu, Y. M. (2004) Activation of cAMP-response-element-binding protein (CREB) after focal cerebral ischemia stimulates neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America 101, 9453-9457.
[1] Yingxia Yang, Lichao Ye, Ruoting Lin, Huasong Lin, Ting Tang, Yafang Chen, Jinying Zhang, Lingxing Wang. Neuropsychological and neuroimaging assessments of early cognitive impairment in patients after mild ischemic stroke and transient ischemic attack[J]. Journal of Integrative Neuroscience, 2020, 19(2): 313-319.
[2] Xiaofang Feng, Lihong Huang, Zongwen Wang, Luojun Wang, Xunhao Du, Qi Wang, Shouru Xue. Efficacy of remote limb ischemic conditioning on poststroke cognitive impairment[J]. Journal of Integrative Neuroscience, 2019, 18(4): 377-385.
[3] Wang Yu, Zhang Na, Yan Fengxia, Gao Yanping. Magnetic resonance imaging study of gray matter in schizophrenia based on XGBoost[J]. Journal of Integrative Neuroscience, 2018, 17(4): 331-336.
[4] Wei Zhang, Shuze Liu, Jie Xiang, Jin Li, Aichun Qiao. Abnormal P50 sensory gating in schizophrenia: A permutation fuzzy entropy analysis[J]. Journal of Integrative Neuroscience, 2018, 17(4): 365-369.
[5] Andrey F. Iznak, Ekaterina V. Iznak, Tatiana P. Klyushnik, Georgy M. Kobel'kov, Elena V. Damjanovich, Igor V. Oleichik, Lilia I. Abramova. Neurobiological parameters in quantitative prediction of treatment outcome in schizophrenic patients[J]. Journal of Integrative Neuroscience, 2018, 17(3): 221-228.
[6] Shinji Ijichi, Naomi Ijichi, Yukina Ijichi, Chikako Imamura, Hisami Sameshima, Yoichi Kawaike, Hirofumi Morioka. The origin of complex human diversity: Stochastic epistatic modules and the intrinsic compatibility between distributional robustness and phenotypic changeability[J]. Journal of Integrative Neuroscience, 2018, 17(1): 1-10.
No Suggested Reading articles found!