Please wait a minute...
Journal of Integrative Neuroscience  2019, Vol. 18 Issue (3): 237-243    DOI: 10.31083/j.jin.2019.03.1100
Original Research Previous articles | Next articles
Effects of low-frequency repetitive transcranial magnetic stimulation on depression- and anxiety-like behaviors in epileptic rats
Shun Wang1, Shanping Mao2, *(), Baozhen Yao1, *(), Dan Xiang3, Congcong Fang1
1 Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P. R. China
2 Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P. R. China
3 Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P. R. China
Download:  PDF(715KB)  ( 1817 ) Full text   ( 135 )
Export:  BibTeX | EndNote (RIS)      
Abstract  

Low-frequency repetitive transcranial magnetic stimulation (rTMS) has been considered as a treatment option for depression and anxiety. However, its role in epilepsy comorbid with depression and anxiety is unclear. Therefore, we evaluated whether low-frequency rTMS can alleviate depression- and anxiety-like behavior in epileptic rats. Forty-eight adult rats were allocated at random to four groups: Control, Pentylenetetrazol (PTZ), PTZ-rTMS and PTZ-Sham. The control group received intraperitoneal injections of normal saline, while the other groups received intraperitoneal injections of pentylenetetrazol (35 mg/kg/d) once a day for 15 days. Low-frequency rTMS or sham stimulation were administered to the PTZ-rTMS and PTZ-Sham group, respectively, over the two-week period. The open-field test (OFT), elevated plus-maze test (EPM) and forced swimming test (FST) were carried out before the experiment, on the 8th and 15th day to assess depression- and anxiety-like behavior in the rats. Two weeks of low-frequency rTMS treatment could not impair the increases of seizure severity in epileptic rats. However, relative to the PTZ and PTZ-Sham group, the two-week low-frequency rTMS treatment significantly reduced the immobility time in the forced swimming test and attenuated the progressive decrease in total distance traveled, frequency of rearing, velocity in the open-field test, number of entries in the open arms (%) and the time spent in the open arms (%) in the elevated plus-maze test of the PTZ-rTMS group. We proposed that low-frequency rTMS can benefit epileptic rats via amelioration of comorbid depression and anxiety, but it can not alleviate the seizure severity.

Key words:  Epilepsy      low-frequency rTMS      depression      anxiety      rat     
Submitted:  01 July 2019      Accepted:  23 August 2019      Published:  30 September 2019     
Fund: 
  • TFLC2018001/Medical Science Advancement Program of Wuhan University
*Corresponding Author(s):  Shanping Mao Email: maoshanp@whu.edu.cn; Baozhen Yao Email: professoryao@aliyun.com   

Cite this article: 

Shun Wang, Shanping Mao, Baozhen Yao, Dan Xiang, Congcong Fang. Effects of low-frequency repetitive transcranial magnetic stimulation on depression- and anxiety-like behaviors in epileptic rats. Journal of Integrative Neuroscience, 2019, 18(3): 237-243.

URL: 

https://jin.imrpress.com/EN/10.31083/j.jin.2019.03.1100     OR     https://jin.imrpress.com/EN/Y2019/V18/I3/237

[1] Anand, S. and Hotson, J. (2002) Transcranial magnetic stimulation: neurophysiological applications and safety. Brain and Cognition 50, 366-386.
[2] Beyenburg, S. and Damsa, C. (2005) Psychiatric comorbidity in epilepsy. Bulletin de la Societe des sciences medicales du Grand-Duche de Luxembourg 3, 283-292. (In French)
[3] Bog, F. K., Jorgensen, M. B., Andersen, Z. J. and Osler, M. (2018) Electroconvulsive therapy and subsequent epilepsy in patients with affective disorders: a register-based danish cohort study. Brain Stimulation 11, 411-415.
[4] Bragatti, J. A., Torres, C. M., Londero, R. G., Assmann, J. B., Fontana, V., Martin, K. C., Hidalgo, M. P., Chaves, M. L. and Bianchin, M. M. (2010) Prevalence of psychiatric comorbidities in temporal lobe epilepsy: the value of structured psychiatric interviews. Epileptic Disorders 12, 283-291.
[5] Chen, R., Spencer, D. C., Weston, J. and Nolan, S. J. (2016) Transcranial magnetic stimulation for the treatment of epilepsy. Cochrane Database of Systematic Reviews, CD011025.
[6] Chervyakov, A. V., Chernyavsky, A. Y., Sinitsyn, D. O. and Piradov, M. A. (2015) Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation. Frontiers in Human Neuroscience 9, 303.
[7] Cianchetti, C., Bianchi, E., Guerrini, R., Baglietto, M. G., Briguglio, M., Cappelletti, S., Casellato, S., Crichiutti, G., Lualdi, R., Margari, L., Romeo, A. and Beghi, E. (2018) Symptoms of anxiety and depression and family's quality of life in children and adolescents with epilepsy. Epilepsy & Behavior 79, 146-153.
[8] Corda, M. G., Orlandi, M., Lecca, D., Carboni, G., Frau, V. and Giorgi, O. (1991) Pentylenetetrazol-induced kindling in rats: effect of GABA function inhibitors. Pharmacology Biochemistry and Behavior 40, 329-333.
[9] Cota, V. R., Drabowski, B. M., de Oliveira, J. C. and Moraes, M. F. (2016) The epileptic amygdala: toward the development of a neural prosthesis by temporally coded electrical stimulation. Journal of Neuroscience Research 94, 463-485.
[10] Fregni, F., Otachi, P. T., Do, V. A., Boggio, P. S., Thut, G., Rigonatti, S. P., Pascual-Leone, A. and Valente, K. D. (2006) A randomized clinical trial of repetitive transcranial magnetic stimulation in patients with refractory epilepsy. Annals of Neurology 60, 447-455.
[11] Grimaldi-Bensouda, L., Nordon, C., Rossignol, M., Jardon, V., Boss, V., Warembourg, F., Reynolds, R., Kurz, X., Rouillon, F. and Abenhaim, L. (2017) Antiepileptic drugs and risk of suicide attempts: a case-control study exploring the impact of underlying medical conditions. Pharmacoepidemiology and Drug Safety 26, 239-247.
[12] Hamed, S. A. (2011) Psychiatric symptomatologies and disorders related to epilepsy and antiepileptic medications. Expert Opinion on Drug Safety 10, 913-934.
[13] Ito, T., Hori, M., Yoshida, K. and Shimizu, M. (1977) Effect of anticonvulsants on seizures developing in the course of daily administration of pentetrazol to rats. European Journal of Pharmacology 45, 165-172.
[14] Izci, F., Findikli, E., Camkurt, M. A., Tuncel, D. and Sahin, M. (2016) Impact of aggression, depression, and anxiety levels on quality of life in epilepsy patients. Neuropsychiatric Disease and Treatment 12, 2595-2603.
[15] Janicak, P. G. and Dokucu, M. E. (2015) Transcranial magnetic stimulation for the treatment of major depression. Neuropsychiatric Disease and Treatment 11, 1549-1560.
[16] Jassova, K., Albrecht, J., Papezova, H. and Anders, M. (2018) Repetitive Transcranial Magnetic Stimulation (rTMS) Treatment of Depression and Anxiety in a Patient with Anorexia Nervosa. Medical Science Monitor 24, 5279-5281.
[17] Joo, E. Y., Han, S. J., Chung, S. H., Cho, J. W., Seo, D. W. and Hong, S. B. (2007) Antiepileptic effects of low-frequency repetitive transcranial magnetic stimulation by different stimulation durations and locations. Clinical Neurophysiology 118, 702-708.
[18] Kim, S. Y., Lee, D. W., Kim, H., Bang, E., Chae, J. H. and Choe, B. Y. (2014) Chronic repetitive transcranial magnetic stimulation enhances GABAergic and cholinergic metabolism in chronic unpredictable mild stress rat model: (1)H-NMR spectroscopy study at 11.7T. Neuroscience Letters 572, 32-37.
[19] Kinoshita, M., Ikeda, A., Begum, T., Yamamoto, J., Hitomi, T. and Shibasaki, H. (2005) Low-frequency repetitive transcranial magnetic stimulation for seizure suppression in patients with extratemporal lobe epilepsy-a pilot study. Seizure 14, 387-392.
[20] Kwon, O. Y. and Park, S. P. (2014) Depression and anxiety in people with epilepsy. Journal of Clinical Neurology 10, 175-188.
[21] Lisanby, S. H. and Belmaker, R. H. (2000) Animal models of the mechanisms of action of repetitive transcranial magnetic stimulation (RTMS): comparisons with electroconvulsive shock (ECS). Depression and Anxiety 12, 178-187.
[22] Mason, C. R. and Cooper, R. M. (1972) A permanent change in convulsive threshold in normal and brain-damaged rats with repeated small doses of pentylenetetrazol. Epilepsia 13, 663-674.
[23] Muller, P. A., Dhamne, S. C., Vahabzadeh-Hagh, A. M., Pascual-Leone, A., Jensen, F. E. and Rotenberg, A. (2014) Suppression of motor cortical excitability in anesthetized rats by low frequency repetitive transcranial magnetic stimulation. PLoS One 9, e91065.
[24] Padala, P. R., Padala, K. P., Lensing, S. Y., Jackson, A. N., Hunter, C. R., Parkes, C. M., Dennis, R. A., Bopp, M. M., Caceda, R., Mennemeier, M. S., Roberson, P. K. and Sullivan, D. H. (2018) Repetitive transcranial magnetic stimulation for apathy in mild cognitive impairment: a double-blind, randomized, sham-controlled, cross-over pilot study. Psychiatry Research 261, 312-318.
[25] Paes, F., Baczynski, T., Novaes, F., Marinho, T., Arias-Carrion, O., Budde, H., Sack, A. T., Huston, J. P., Almada, L. F., Carta, M., Silva, A. C., Nardi, A. E. and Machado, S. (2013) Repetitive transcranial magnetic stimulation (rTMS) to treat social anxiety disorder: case reports and a review of the literature. C linical Practice & Epidemiology in Mental Health 9, 180-188.
[26] Pisani, L. R., Nikanorova, M., Landmark, C. J., Johannessen, S. I. and Pisani, F. (2017) Specific patient features affect antiepileptic drug therapy decisions: focus on gender, age, and psychiatric comorbidities. Current Pharmaceutical Design 23, 5639-5648.
[27] Racine, R. J. (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalography and Clinical Neurophysiology 32, 281-294.
[28] Smith, J., Armacost, M., Ensign, E., Shaw, S., Jimenez, N., Millett, D., Liu, C. and Heck, C. N. (2018) Epilepsy surgery in the underserved Hispanic population improves depression, anxiety, and quality of life. Epilepsy & Behavior 83, 1-6.
[29] Sun, W., Mao, W., Meng, X., Wang, D., Qiao, L., Tao, W., Li, L., Jia, X., Han, C., Fu, M., Tong, X., Wu, X. and Wang, Y. (2012) Low-frequency repetitive transcranial magnetic stimulation for the treatment of refractory partial epilepsy: a controlled clinical study. Epilepsia 53, 1782-1789.
[30] Tan, T., Wang, W., Xu, H., Huang, Z., Wang, Y. T. and Dong, Z. (2018) Low-frequency rTMS ameliorates autistic-like behaviors in rats induced by neonatal isolation through regulating the synaptic GABA transmission. Frontiers in Cellular Neuroscience 12, 46.
[31] Tan, T., Xie, J., Tong, Z., Liu, T., Chen, X. and Tian, X. (2013) Repetitive transcranial magnetic stimulation increases excitability of hippocampal CA1 pyramidal neurons. Brain Research 1520, 23-35.
[32] Theodore, W. H., Hunter, K., Chen, R., Vega-Bermudez, F., Boroojerdi, B., Reeves-Tyer, P., Werhahn, K., Kelley, K. R. and Cohen, L. (2002) Transcranial magnetic stimulation for the treatment of seizures: a controlled study. Neurology 59, 560-562.
[33] Tsuji, S. (1994) Transcranial magnetic stimulation. Rinsho Shinkeigaku 34, 1258-1261.
[34] Yadollahpour, A., Firouzabadi, S. M., Shahpari, M. and Mirnajafi-Zadeh, J. (2014) Repetitive transcranial magnetic stimulation decreases the kindling induced synaptic potentiation: effects of frequency and coil shape. Epilepsy Research 108, 190-201.
[35] Yokoe, M., Mano, T., Maruo, T., Hosomi, K., Shimokawa, T., Kishima, H., Oshino, S., Morris, S., Kageyama, Y., Goto, Y., Shimizu, T., Mochizuki, H., Yoshimine, T. and Saitoh, Y. (2018) The optimal stimulation site for high-frequency repetitive transcranial magnetic stimulation in Parkinson's disease: A double-blind crossover pilot study. Journal of Clinical Neuroscience 47, 72-78.
[1] Taryn Chalmers, Shamona Maharaj, Ty Lees, CT Lin, Phillip Newton, Roderick Clifton-Bligh, Craig S McLachlan, Sylvia M Gustin, Sara Lal. Impact of acute stress on cortical electrical activity and cardiac autonomic coupling[J]. Journal of Integrative Neuroscience, 2020, 19(2): 239-248.
[2] Mingxue Li, Wenguang Wang, Dexuan Kuang, Leiying Ruan, Xiaohui Li, Xin Huang, Xiaomei Sun, Jiejie Dai, Caixia Lu. Identification, characterization and expression profiles of PSEN2 in the Chinese tree shrew (Tupaia belangeri chinensis)[J]. Journal of Integrative Neuroscience, 2020, 19(2): 249-257.
[3] Jie Chen, Yunling Huang, Ling Li, Jie Niu, Weiqiong Ye, Yunnan Wang, Can Yan, Lili Wu. Antidepressant pathways of the Chinese herb jiaweisinisan through genetic ontology analysis[J]. Journal of Integrative Neuroscience, 2020, 19(2): 385-395.
[4] Yuan Li, Fan Wu, Lixing Lao, Xueyong Shen. Laser irradiation activates spinal adenosine A1 receptor to alleviate osteoarthritis pain in monosodium iodoacetate injected rats[J]. Journal of Integrative Neuroscience, 2020, 19(2): 295-302.
[5] Rekha Sahu, Satya Ranjan Dash, Lleuvelyn A Cacha, Roman R Poznanski, Shantipriya Parida. Epileptic seizure detection: a comparative study between deep and traditional machine learning techniques[J]. Journal of Integrative Neuroscience, 2020, 19(1): 1-9.
[6] Ko-En Chiang, Yi-Tse Hsiao. Activation of cannabinoid receptor type 1 impairs spatial and temporal aspects of episodic-like memories in rats[J]. Journal of Integrative Neuroscience, 2020, 19(1): 11-19.
[7] Ping Liu, Li-ye Wang, Yu-qing Wang, Rong-liang Wang, Fang-fang Li, Sijia Zhang, Zhen Tao, Hai-ping Zhao, Zi-ping Han, Zhi-gang Chen, Yu-min Luo. The Chinese herb Fructus Broussonetiae aids learning and memory in chronic cerebral hypoperfusion by reducing proinflammatory microglia activation in rats[J]. Journal of Integrative Neuroscience, 2020, 19(1): 21-29.
[8] Ran Ye, Miao Zhang, Song Zhang, Shasha Bai, Zhangyu Jiang, Qiang Cai, Kerun Cao, Chongkun Shen, Yafei Shi, Rong Zhang, Lei Yang. Stress causes cognitive impairment by affecting cholesterol efflux and reuptake leading to abnormalities in lipid metabolism of rats[J]. Journal of Integrative Neuroscience, 2020, 19(1): 39-49.
[9] Jiajia Wu, Shuai Wang, Yechen Lu, Mouxiong Zheng, Xuyun Hua, Jianguang Xu. Shifted hub regions in the brain network of rat neuropathic pain model after electroacupuncture therapy[J]. Journal of Integrative Neuroscience, 2020, 19(1): 65-75.
[10] Zupeng Chen, Cheng Wang, Yajun Liu, Xiaolong Liang, Chao Yang, Xin Zhang, Xu Li. Protective effects of medicinal plant breviscapine on postcerebral hemorrhage in rats[J]. Journal of Integrative Neuroscience, 2020, 19(1): 101-109.
[11] George Zaki Ghali, Michael George Zaki Ghali. Microneurosurgical techniques and perioperative strategies utilized to optimize experimental supracollicular decerebration in rats[J]. Journal of Integrative Neuroscience, 2020, 19(1): 137-177.
[12] Qian Zhang, Jia Li, Wenqiang An, Yiou Fan, Qilong Cao. Neural stem cell secretome and its role in the treatment of neurodegenerative disorders[J]. Journal of Integrative Neuroscience, 2020, 19(1): 179-185.
[13] Natalia González Rojas, Martin Cesarini, José Luis Etcheverry, Gustavo Andrés Da Prat, Valeria Antico Arciuch, Emilia Mabel Gatto. Neurodegenerative diseases and cancer: sharing common mechanisms in complex interactions[J]. Journal of Integrative Neuroscience, 2020, 19(1): 187-199.
[14] Shuo Jiang, Quan-ai Zhang, Qin Guo, Zhong Di. The glutamatergic system and astrocytic impairment in rat hippocampus: a comparative study of underlying etiology and pathophysiology of depression[J]. Journal of Integrative Neuroscience, 2019, 18(4): 387-392.
[15] Meichun Yuan, Hezhong Zhu, Jiajuan Chen, Dan Zhao, Qi Wan, Zhifeng Zhang. A novel squaramide compound alleviates cognitive deficits through activation of Akt and Erk1/2 in a rat model of vascular dementia[J]. Journal of Integrative Neuroscience, 2019, 18(4): 401-408.
No Suggested Reading articles found!