Please wait a minute...
Journal of Integrative Neuroscience  2019, Vol. 18 Issue (2): 107-115    DOI: 10.31083/j.jin.2019.02.159
Original Research Previous articles | Next articles
Electrophysiological modulation and cognitive-verbal enhancement by multi-session Broca's stimulation: a quantitative EEG transcranial direct current stimulation based investigation
Zahra Kheradmand Saadi1, 2, 3, Mahboobeh Saadat1, Ali-Mohammad Kamali2, 3, 4, Seyedeh-Saeedeh Yahyavi2, 3, 4, Mohammad Nami2, 3, 4, 5, *()
1 Department of Foreign Languages and Linguistics, Shiraz University, Shiraz, 7194685115, Iran
2 DANA Brain Health Institute, Iranian Neuroscience Society, Fars Chapter, Shiraz, 7183611557, Iran
3 Neuroscience Laboratory-NSL (Brain, Cognition and Behavior), Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7184737798, Iran
4 Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7184737798, Iran
5 Academy of Health, Senses Cultural Foundation, Sacramento, CA, 95826, USA
Download:  PDF(6106KB)  ( 888 ) Full text   ( 73 )
Export:  BibTeX | EndNote (RIS)      

To evaluate transcranial direct current stimulation-induced changes in resting state quantitative EEG and cognitive-verbal performance of second language learners, 16 healthy individuals were randomly recruited to sham and real transcranial direct current stimulation groups receiving eight sessions of second language instruction accompanied by a 2 mA transcranial direct current stimulation over Broca's area with the cathode placed over the left arm. Quantitative EEG was recorded during the resting state after the stimulation session and second language instruction. Reduced theta activity at Fp1, F7, F3, and T5 caused by the stimulus current was reported. Multisession stimulation resulted in a significant increase in current density for beta power (25 Hz) in the language network. Cognitive-verbal pre-post stimulation performances suggest that anodal vs. sham transcranial direct current stimulation significantly improved the subjects test score on digit span, a cognitive-verbal ability. It is concluded that transcranial direct current stimulation of Broca's area increase cognitive-verbal performance by modulating brain electrical activity in language-related regions.

Key words:  qEEG      transcranial direct current stimulation      Broca's area      cognitive-verbal function      current density     
Submitted:  27 April 2019      Accepted:  26 June 2019      Published:  30 June 2019     
  • DANA Brain Health Institute (DBHI), Shiraz, Iran
*Corresponding Author(s):  Mohammad Nami     E-mail:

Cite this article: 

Zahra Kheradmand Saadi, Mahboobeh Saadat, Ali-Mohammad Kamali, Seyedeh-Saeedeh Yahyavi, Mohammad Nami. Electrophysiological modulation and cognitive-verbal enhancement by multi-session Broca's stimulation: a quantitative EEG transcranial direct current stimulation based investigation. Journal of Integrative Neuroscience, 2019, 18(2): 107-115.

URL:     OR

Table 1  Demographic information of the participants.
Real tDCS arm (n = 8) Sham tDCS arm (n = 8)
Male/female 3/5 3/5
Mean age in years 23.8 ± 4.5 23.5 ± 3.6
Mean years of formal education 15.50 ± 2 14.25 ± 1.5
Figure 1.  Effect of real vs. sham tDCS on linguistic ROI absolute power (μV2) for frequency bands theta (4-8 Hz), alpha (8-12 Hz), beta (12--30 Hz) and high beta (25-30 Hz) in sessions 1 (S1) and 8 (S8) of tDCS. Multi-session real vs. sham tDCS induced a significant decrease in theta power in linguistic ROI and significantly increased beta power at F7 and T5. Statistical significance assumed for P < 0.05, results given as mean ± standard error of the mean (SEM).

Figure 2.  Dot plots give mean CSD z-score of language network centers at 25 Hz oscillation that showed significant loading during the resting state. Real vs. sham tDCS resulted in a significant mean CSD z-score in sessions 1 (S1) and 8 (S8) during the resting state (P < 0.05). Intra-group comparisons revealed no significant difference between the two group mean values in S1 and S8. Statistical comparison: mean ± standard error of the mean (SEM), significance level: P < 0.05 indicated by asterisk (*).

Figure 3.  Average effect of sham vs. real tDCS on the mean language network CSD z-score at 25 Hz for the resting state EEG. Panel a, b: Real tDCS group average CSD z-score after one and eight sessions of tDCS. Panel c, d: Average CSD z-score of the sham group in the first and eight sessions of tDCS.

Figure 4.  Subject performance in verbal trials of CBS-CP before and after tDCS intervention. Panel A: No significant difference between the performance of the subjects on three verbal tasks in the sham and real tDCS groups. Panel B: tDCS accompanying L2 grammar instruction significantly improves subject performance in the Digit span task compared with sham stimulation (P < 0.05). Panel C: Significant difference in Grammatical reasoning task from preto post-intervention in the sham group (P < 0.05). Panel D: Significant improvement of the tDCS group from preto post-intervention on Digit Span and Grammatical Reasoning tasks (P < 0.05). Significant P-value 0 .05. Asterisk (*) indicates significant differences, data summarized as mean ± standard error of the mean (SEM).

[1] Ardolino, G., Bossi, B., Barbieri, S., and Priori, A. (2005) Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain. The Journal of Physiology (London) 568 , 653-663.
[2] Arnold,, J. E., Nozari,, N. (2017) The effects of utterance timing and stimulation of left prefrontal cortex on the production of referential expressions. Cognition 160, 127-144.
[3] Baddeley,, A. (2003) Working memory: looking back and looking forward. Nature Reviews Neuroscience 4, 829-839.
[4] Baddeley,, A. D., Hitch,, G. (1974) Working memory. Psychology of Learning and Motivation 8, 47-89.
[5] Barry, R. J., Clarke, A. R., Johnstone, S. J., and Brown, C. R. (2009) EEG differences in children between eyes-closed and eyes-open resting conditions. Clinical Neurophysiology, 120, 1806-1811.
[6] Baudewig, J., Nitsche, M. A., Paulus, W., and Frahm, J. (2001) Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation. Magnetic Resonance in Medicine 45, 196-201.
[7] Bernal, B., Ardila, A., and Rosselli, M. (2015) Broca's area network in language function: a pooling-data connectivity study. Frontiers in Psychology 6, 1-8.
[8] Binder,, J. R. (2015) The Wernicke area: Modern evidence and a reinterpretation. Neurology 85, 2170-2175.
[9] Bor, D., Cumming, N., Scott, C. E., and Owen, A. M. (2004) Prefrontal cortical involvement in verbal encoding strategies. European Journal of Neuroscience 19, 3365-3370.
[10] Bullard, L., Browning, E., Clark, V. P., Coffman, B. A., Garcia, C. M., Jung, R., Wootton, C. (2011) Transcranial direct current stimulation's effect on novice versus experienced learning. Experimental Brain Research 213, 9-14.
[11] Cappelletti, M., Fregni, F., Shapiro, K., Pascual-Leone, A., and Caramazza, A. (2008) Processing nouns and verbs in the left frontal cortex: a transcranial magnetic stimulation study. Journal of Cognitive Neuroscience 20, 707-720.
[12] Chesters, J., Möttönen, R., and Watkins, K. E. (2018) Transcranial direct current stimulation over left inferior frontal cortex improves speech fluency in adults who stutter. Brain 141, 1161-1171.
[13] Cho,, S. S., Strafella,, A. P. (2009) rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex. PLoS One 4, 1-8.
[14] Clark, V. P., Coffman, B. A., Mayer, A. R., Weisend, M. P., Lane, T. D., Calhoun, V. D. and Wassermann, E. M. (2012) TDCS guided using fMRI significantly accelerates learning to identify concealed objects. Neuroimage 59, 117-128.
[15] Cohen, R. K., Soskic, S., Iuculano, T., Kanai, R., and Walsh, V. (2010) Modulating neuronal activity produces specific and longlasting changes in numerical competence. Current Biology 20, 2016-2020.
[16] Elmer, S., Burkard, M., Renz, B., Meyer, M., and Jancke, L. (2009) Direct current induced short-term modulation of the left dorsolateral prefrontal cortex while learning auditory presented nouns. Behavioral and Brain Functions 5, 1-7.
[17] Ferreira, N., Owen, A., Mohan, A., Corbett, A., and Ballard, C. (2015) Associations between cognitively stimulating leisure activities, cognitive function and age-related cognitive decline. International Journal of Geriatric Psychiatry 30, 422-430.
[18] Ferrucci, R., Mameli, F., Guidi, I., Mrakic-Sposta, S., Vergari, M., Marceglia, S. and Priori, A. (2008) Transcranial direct current stimulation improves recognition memory in Alzheimer disease. Neurology 71, 493-498.
[19] Fertonani, A., Rosini, S., Cotelli, M., Rossini, P. M., and Miniussi, C. (2010) Naming facilitation induced by transcranial direct current stimulation. Behavioural Brain Research 208, 311-318.
[20] Fiebach, C. J., Schlesewsky, M., and Friederici, A. D. (2001) Syntactic working memory and the establishment of filler-gap dependencies: Insights from ERPs and fMRI. Journal of Psycholinguistic Research 30, 321-338.
[21] Filmer, H. L., Dux, P. E., and Mattingley, J. B. (2014) Applications of transcranial direct current stimulation for understanding brain function. Trends in Neurosciences 37, 742-753.
[22] Fiori, V., Cipollari, S., Caltagirone, C., and Marangolo, P. (2014) If two witches would watch two watches, which witch would watch which watch? tDCS over the left frontal region modulates tongue twister repetition in healthy subjects. Neuroscience 256, 195200.
[23] Fiori, V., Coccia, M., Marinelli, C. V., Vecchi, V., Bonifazi, S., Ceravolo, M. G. and Marangolo, P. (2011) Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects. Journal of Cognitive Neuroscience 23, 23092323.
[24] Giustolisi, B., Vergallito, A., Cecchetto, C., Varoli, E., and Lauro, J. R. (2018) Anodal transcranial direct current stimulation over left inferior frontal gyrus enhances sentence comprehension. Brain and Language 176, 36-41.
[25] Hagoort,, P. (2005) On Broca, brain, and binding: a new framework. Trends in Cognitive Sciences 9, 416-423.
[26] Hagovska, M., Takáč, P., and Dzvoník, O. (2016) Effect of a combining cognitive and balanced training on the cognitive, postural and functional status of seniors with a mild cognitive deficit in a randomized, controlled trial. European Journal of Physical and Rehabilitation Medicine 52, 101-109.
[27] Hampshire, A., Highfield, R. R., Parkin, B. L., and Owen, A. (2012) Fractionating human intelligence. Neuron 76, 12251237.
[28] Hlinka,, J. (2010) Studying spontaneous brain activity with neuroimaging methods and mathematical modelling. Ph.D. Thesis. University of Nottingham, U.K.
[29] Hlinka, J., Alexakis, C., Diukova, A., Liddle, P. F., and Auer, D. P. (2010) Slow EEG pattern predicts reduced intrinsic functional connectivity in the default mode network: an inter-subject analysis. Neuroimage 53, 239-246.
[30] Holland, R., Leff, A. P., Josephs, O., Galea, J. M., Desikan, M., Price, C. J. and Crinion, J. (2011) Speech facilitation by left inferior frontal cortex stimulation. Current Biology 21, 1403-1407.
[31] Horvath, J. C., Forte, J. D., and Carter, O. (2015) Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS) Brain Stimulation 8, 535-550.
[32] Kadosh, R. C., Soskic, S., Iuculano, T., Kanai, R., and Walsh, V. (2010) Modulating neuronal activity produces specific and longlasting changes in numerical competence. Current Biology 20, 2016-2020.
[33] Kamali, A. M., Nami, M., Yahyavi, S. S., Saadi, Z. K., and Mohammadi, A. (2019) Transcranial direct current stimulation to assist experienced pistol shooters in gaining even-better performance scores. The Cerebellum 18, 119-127.
[34] Kamali, A. M., Shamsi, F., Zeraatpisheh, Z., Kamelmanesh, M. M., and Nami, M. (2019) The impact of UCMAS training program on potentiating cognitive capacity among 9-12 year-old primary schoolers in shiraz. 1904, 07589.
[35] Kasahara, K., Tanaka, S., Hanakawa, T., Senoo, A., and Honda, M. (2013) Lateralization of activity in the parietal cortex predicts the effectiveness of bilateral transcranial direct current stimulation on performance of a mental calculation task. Neuroscience Letters 545, 86-90.
[36] Keeser, D., Padberg, F., Reisinger, E., Pogarell, O., Kirsch, V., Palm, U. and Mulert, C. (2011) Prefrontal direct current stimulation modulates resting EEG and event-related potentials in healthy subjects: a standardized low resolution tomography (sLORETA) study. Neu-roimage 55, 644-657.
[37] Keller, C. J., Huang, Y., Herrero, J. L., Fini, M. E., Du, V., Lado, F. A. and Mehta, A. D. (2018) Induction and quantification of excitability changes in human cortical networks. Journal of Neuroscience 38, 5384-5398.
[38] Kincses, T. Z., Antal, A., Nitsche, M. A., Bártfai, O., and Paulus, W. (2004) Facilitation of probabilistic classification learning by transcranial direct current stimulation of the prefrontal cortex in the human. Neuropsychologia 42, 113-117.
[39] Klimesch, W., Schimke, H., and Schwaiger, J. (1994) Episodic and semantic memory: an analysis in the EEG theta and alpha band. Electroencephalography and Clinical Neurophysiology 91, 428-441.
[40] Kunert, R., Willems, R. M., Casasanto, D., Patel, A. D., and Hagoort, P. (2015) Music and language syntax interact in Broca's area: an fMRI study. PLoS One 10, 1-16.
[41] Lang, N., Siebner, H. R., Ward, N. S., Lee, L., Nitsche, M. A., Paulus, W. and Frackowiak, R. S. (2005) How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain ? European Journal of Neuroscience 22, 495-504.
[42] Loughman, A., Bowden, S., and D'souza, W. (2014) Cognitive functioning in idiopathic generalised epilepsies: a systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews, 43, 20-34.
[43] Lupyan, G., Mirman, D., Hamilton, R., and Thompson-Schill, S. L. (2012) Categorization is modulated by transcranial direct current stimulation over left prefrontal cortex. Cognition 124, 36-49.
[44] Marshall, L., Mölle, M., Hallschmid, M., and Born, J. (2004) Transcranial direct current stimulation during sleep improves declarative memory. Journal of Neuroscience 24, 9985-9992.
[45] Martin, D. M., Liu, R., Alonzo, A., Green, M., and Loo, C. K. (2014) Use of transcranial direct current stimulation (tDCS) to enhance cognitive training: effect of timing of stimulation. Experimental Brain Research 232, 3345-3351.
[46] Meinzer, M., Antonenko, D., Lindenberg, R., Hetzer, S., Ulm, L., Avirame, K., Flaisch, T. and Flöel, A. (2012) Electrical brain stimulation improves cognitive performance by modulating functional connectivity and task-specific activation. Journal of Neuroscience 32, 1859-1866.
[47] Nitsche, M. A., Schauenburg, A., Lang, N., Liebetanz, D., Exner, C., Paulus, W., and Tergau, F. (2003) Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. Journal of Cognitive Neuroscience 15, 619-626.
[48] Novick, J. M., Trueswell, J. C., and Thompson-Schill, S. L. (2005) Cognitive control and parsing: Reexamining the role of Broca's area in sentence comprehension. Cognitive, Affective, and Behavioral Neuroscience 5, 263-281.
[49] Novick, J. M., Trueswell, J. C., and Thompson-Schill, S. L. (2010) Broca's area and language processing: Evidence for the cognitive control connection. Language and Linguistics Compass 4, 906924.
[50] Ohn, S. H., Park, C. I., Yoo, W. K., Ko, M. H., Choi, K. P., Kim, G. M., Lee, Y. T. and Kim, Y. H. (2008) Time-dependent effect of transcranial direct current stimulation on the enhancement of working memory. Neuroreport 19, 43-47.
[51] Oldfield,, R. C. (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9, 97-113.
[52] Owen, A. M., Hampshire, A., Grahn, J. A., Stenton, R., Dajani, S., Burns, A. S., Howard, R. J. and Ballard, C. G. (2010) Putting brain training to the test. Nature 465, 775-778.
[53] Pallant, J . (2013) SPSS Survival Manual, McGraw-Hill Education (UK).
[54] Rogalsky,, C., Matchin,, W., and Hickok, G . (2008) Broca's area, sentence comprehension, and working memory: an fMRI study. Frontiers in Human Neuroscience 2, 1-14.
[55] Smits, M., Visch-Brink, E., Schraa-Tam, C. K., Koudstaal, P. J., and van der Lugt, A. (2006) Functional MR imaging of language processing: an overview of easy-to-implement paradigms for patient care and clinical research. Radiographics 26, S145-S158.
[56] Stagg, C. J., Best, J. G., Stephenson, M. C., O'Shea, J., Wylezinska, M., Kincses, Z. T., Morris, P. G., Matthews, P. M. and JohansenBerg, H. (2009) Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. Journal of Neuroscience 29, 5202-5206.
[57] Stroop,, J. R. (1935) Studies of interference in serial verbal reactions. Journal of Experimental Psychology 18, 643-662.
[58] Sweeney, J. A., Kmiec, J. A., and Kupfer, D. J. (2000) Neuropsychologic impairments in bipolar and unipolar mood disorders on the CANTAB neurocognitive battery. Biological Psychiatry 48, 674684.
[59] Weiss,, S., Mueller,, H. M. (2003) The contribution of EEG coherence to the investigation of language. Brain and Language 85, 325-343.
[60] Weiss, S., Müller, H. M., and Rappelsberger, P. (2000) Theta synchronization predicts efficient memory encoding of concrete and abstract nouns. Neuroreport 11, 2357-2361.
[61] Wesnes, K. A., Edgar, C. J., Kezic, I., Salih, H. M., and de Boer, P. (2013) Effects of nicotine withdrawal on cognition in a clinical trial setting. Psychopharmacology 229, 133-140.
[1] Abolfazl Alipour, Sahar Seifzadeh, Hadi Aligholi, Mohammad Nami. QEEG-based neural correlates of decision making in a well-trained eight year-old chess player[J]. Journal of Integrative Neuroscience, 2018, 17(3): 297-306.
[2] Zahra Khayyer, Leonard Ngaosuvan, Sverker Sikström, Amir Hossein Ghaderi. Transcranial direct current stimulation based on qEEG combining positive psychotherapy for major depression[J]. Journal of Integrative Neuroscience, 2018, 17(2): 89-96.
No Suggested Reading articles found!