Please wait a minute...
Journal of Integrative Neuroscience  2019, Vol. 18 Issue (1): 1-10    DOI: 10.31083/j.jin.2019.01.105
Original Research | Next articles
Theorizing how the brain encodes consciousness based on negentropic entanglement
R. R. Poznanski1, *(), L. A. Cacha1, A. Z. A. Latif1, S. H. Salleh2, J. Ali3, P. Yupapin4, 5, J. A. Tuszynski6, 7, M. A. Tengku1
1 Faculty of Medicine, Universiti Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia
2 Centre for Biomedical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
3 Laser Centre, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
4 Computational Optics Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, District 7, Ho Chi Minh City, Vietnam
5 Faculty of Applied Sciences, Ton Duc Thang University, District 7, Ho Chi Minh City, Vietnam
6 Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada
7 Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy
Download:  PDF(4120KB)  ( 1499 ) Full text   ( 187 )
Export:  BibTeX | EndNote (RIS)      
Abstract  

The physicality of subjectivity is explained through a theoretical conceptualization of guidance waves informing meaning in negentropically entangled non-electrolytic brain regions. Subjectivity manifests its influence at the microscopic scale of matter originating from de Broglie ‘hidden’ thermodynamics as action of guidance waves. The preconscious experienceability of subjectivity is associated with a nested hierarchy of microprocesses, which are actualized as a continuum of patterns of discrete atomic microfeels (or “qualia”). The mechanism is suggested to be through negentropic entanglement of hierarchical thermodynamic transfer of information as thermo-qubits originating from nonpolarized regions of actin-binding proteinaceous structures of nonsynaptic spines. The resultant continuous stream of intrinsic information entails a negentropic action (or experiential flow of thermo-quantum internal energy that results in a negentropic force) which is encoded through the non-zero real component of the mean approximation of the negentropic force as a ‘consciousness code.’ Consciousness consisting of two major subprocesses: (1) preconscious experienceability and (2) conscious experience. Both are encapsulated by nonreductive physicalism and panexperiential materialism. The subprocess (1) governing “subjectivity” carries many microprocesses leading to the actualization of discrete atomic microfeels by the ‘consciousness code’. These atomic microfeels constitute internal energy that results in the transfer intrinsic information in terms of thermo-qubits. These thermo-qubits are realized as thermal entropy and sensed by subprocess (2) governing “self-awareness” in conscious experience.

Key words:  de Broglie hidden thermodynamics      negentropic entanglement      guidance waves      negentropic force      macro-quantum wave equation      thermo-qubits      electron clouds      preconscious experienceability      consciousness code     
Submitted:  04 January 2019      Accepted:  23 March 2019      Published:  30 March 2019     
Fund: 
  • FRGS-4F891/UTM
*Corresponding Author(s):  R. R. Poznanski     E-mail:  romanrichard@unisza.edu.my

Cite this article: 

R. R. Poznanski, L. A. Cacha, A. Z. A. Latif, S. H. Salleh, J. Ali, P. Yupapin, J. A. Tuszynski, M. A. Tengku. Theorizing how the brain encodes consciousness based on negentropic entanglement. Journal of Integrative Neuroscience, 2019, 18(1): 1-10.

URL: 

https://jin.imrpress.com/EN/10.31083/j.jin.2019.01.105     OR     https://jin.imrpress.com/EN/Y2019/V18/I1/1

Figure 1.  Schematic diagram illustrating (top left) a neuronal branchlet studded with spines and (top right) shows a nonsynaptic spine shaft containing cytoskeletal molecular proteins bound to actin-filament networks within the spine shaft of uniform length approximately 0.7 $\mu$ m and 100 nm in diameter. The quantized subspace is where pilot-waves originate at picometer scale ($\sim$ 0.1 nm) within apolar hydrophobic regions of actin-binding proteins shown (bottom left) form clathrate-like structures with water molecules (adapted from Mentre:2012. The electron clouds at $\sim$ 10 pico-meter scale (bottom right) is an order of magnitude smaller than most chemistry transformations and measurements and therefore below physical chemistry.

Figure 2.  The mean approximation of the negentropic force in units of Newton per unit mass as a function of space resulting from the macro-quantum potential energy (Q) for (a) L = 1, t = 0.1, $\gamma$= 1.0 (b) L = 0.1, t = 0.01, $\gamma$= 0.01. and (c) L = 1.5, t = 0.5, $\gamma$= 2. Real component is shown in blue and imaginary component is shown in red. The values of the parameters were arbitrarily chosen.

Figure 3.  The sense of the negentropic force in units of Newton per unit mass as a function of time resulting from the macro-quantum potential energy (Q) for (a) L = 1, $\gamma$= 1.0, x = 0.1 (b) L = 0.1, $\gamma$= 0.01,x = 0.025 and (c) L = 1.5, $\gamma$= 2, x = 0.5. Real component is shown as a continuous line (blue) and imaginary component is shown as a dashed line (red). The values of the parameters were arbitrarily chosen.

Figure 4.  The sense of the negentropic force in units of Newton per unit mass as a function of space resulting from the macro-quantum potential energy (Q) for (a) L = 1, $\gamma$= 1.0, t = 0.1 (b) L = 0.1, $\gamma$= 0.01, t = 0.01 and (c) L = 1.5, $\gamma$= 2.0, t = 0.5. Real component is shown as a continuous line (blue) and imaginary component is shown as a dashed line (red). The values of the parameters were arbitrarily chosen.

[1] Arellano, J. I., Espinosa, A., Fairen, A., Yuste, R. and DeFelipe, J. (2007) Non-synaptic dendritic spines in neocortex. Neuroscience 145, 464-469.
doi: 10.1016/j.neuroscience.2006.12.015 pmid: 17240073
[2] Baars, B. J. and Edelman, D. B. (2012) Consciousness, biology and quantum hypotheses. Physics of Life Reviews 9, 285-294.
doi: 10.1016/j.plrev.2012.07.001 pmid: 22925839
[3] Banerjee-Ghosh, K., Dor, O.B., Tassinari, F., Capua, E., Yochelis, S., Capua, A., Yang, S-H., , Parkin, S, S. P., Sarkar, S., Kronik, L., Baczewski, L. T., Naaman, R. and Paltiel, Y. (2018) Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates. Science 360, 1331-1334.
doi: 10.1126/science.aar4265 pmid: 29748324
[4] Barenghi, C. F. and Parker, N. G. (2016) A Primer on Quantum Fluids. Springer, Berlin.
[5] Beck, F. and Eccles, J. C. (1992) Quantum aspects of brain activity and the role of consciousness. Proceedings of the National Academy of Science (USA) 89, 11357-11361.
doi: 10.1007/978-3-642-49224-2_9 pmid: 1333607
[6] Bohm, D. J. (1952) A suggested interpretation of the quantum theory in terms of hidden variables. Physical Review 85, 166-193.
doi: 10.1103/PhysRev.85.166
[7] Bohm, D. J. (1990) A new theory of the relationship of mind and matter. Philosophical Psychology 3, 271-286.
doi: 10.1080/09515089008573004
[8] Brillouin, L. (1953) The negentropy principle of information. Journal of Applied Physics 24, 1152-1163.
doi: 10.1063/1.1721463
[9] Brillouin, L.(1962) Science and Information Theory. Academic Press, New York.
[10] Cicurel, R. and Nicolelis, M . (2015) The Relativistic Brain: How It Works and Why It cannot be Simulated by a Turing Machine. Kios Press, Sao Paulo.
[11] Collell, G. and Fauquet, J . (2015) Brain activity and cognition: a connection from thermodynamics and information theory. Frontiers in Psychology 6, 818.
[12] Craddock, T. J. A., Hameroff, S. R. and Tuszynski, J. A. (2017) The ‘quantum underground’: where life and consciousness originate. In, R.R.Poznanski, J.A. Tuszynski and T.E. Feinberg (eds) Biophysics of Consciousness: A Foundational Approach. World Scientific, Singapore.
[13] Crick, F. H. C. (1994 a) The Astonishing Hypothesis. London, Simon & Schuster.
[14] Crick, F. H. C (1994 b) Interview on the astonishing hypothesis. Journal of Consciousness. Studies 1, 17-24.
[15] Del Castillo, L. F. and Vera-Cruz, P . (2011) Thermodynamic formulation of living systems and their evolution. Journal of Modern Physics 2, 379-391.
[16] Dennis, G., de Gosson, M. A. and Hiley, B. J. (2015) Bohm’s quantum potential as an internal energy. Physics Letters A 379, 1224-1227.
doi: 10.1016/j.physleta.2015.02.038
[17] de Broglie, L. (1970) The reinterpretation of wave mechanics. Foundations of Physics 1, 5-15.
[18] de Broglie, L. (1987) The reinterpretation of quantum mechanics by the double solution theory. Annales de la Fondation Louis de Broglie 12, 1-23.
[19] Fischer, D. B., Boes, A. D., Demertzi, A., Evrard, H. C., Laureys, S., Edlow, B. L., Liu, H., Saper, C. B., Pascual-Leone, A., Fox, M. D. and Geerling, J. C. (2016) A human brain network derived from coma-causing brainstem lesions. Neurology 87, 2427-2434.
doi: 10.1212/WNL.0000000000003404 pmid: 5177681
[20] Franks, N. P. and Lieb, W. R. (1984) Do general anaesthetics act by competitive binding to specific receptors? Nature 310, 599-601.
[21] Georgiev, D . (2007) Falsifications of Hameroff-Penrose Orch OR model of consciousness and novel avenues for development of quantum mind theory. NeuroQuantology 5, 145-174.
[22] Gould, L. I. (1995) Quantum dynamics and neural dynamics: analogies between the formalisms of Bohm and Pribram. In, J. King and K.H. Pribram (eds.) Scale in Conscious Experience: Is the Brain Too Important To Be Left to Specialists to Study? Lawrence Erlbaum, New Jersey.
[23] Griffin, D. R. (1997) Panexperientialist physicalism. Journal of Consciousness Studies 4, 248-268.
[24] Grössing, G . (2009) On the thermodynamic origin of the quantum potential. Physica A 388, 811-823.
doi: 10.1016/j.physa.2008.11.033
[25] Hameroff, S. R. (1994) Quantum coherence in microtubules: a neural basis for emergent consciousness. Journal of Consciousness Studies 1, 91-118.
[26] Hameroff, S. R. (2008) That’s Life! The geometry of $\pi$ electron resonance clouds. In, D. Abbott, P.C.W. Davis and A.K. Pati (eds) Quantum Aspects of Life. World Scientific Publishers, Singapore.
[27] Hameroff, S. R. (2010) The ‘conscious pilot’- dendritic synchrony moves through the brain to mediate consciousness. Journal of Biological Physics 36, 71-93.
doi: 10.1007/s10867-009-9148-x pmid: 19669425
[28] Hameroff, S. R. and Penrose, R. (1996 a) Conscious events as orchestrated space-time selections. Journal of Consciousness Studies 3, 36-53.
doi: 10.1016/S0735-1097(13)61388-1
[29] Hameroff, S. R. and Penrose, R . (1996 b) Orchestrated reduction of quantum coherence in brain microtubules: a model for consciousness. Mathematics and Computers in Simulation 40, 453-480.
doi: 10.1016/0378-4754(96)80476-9
[30] Hameroff, S. R. and Penrose, R . (2017) Consciousness in the universe: An updated review of the “Orch OR’ theory. In, R.R.Poznanski, J.A. Tuszynski & T.E. Feinberg (eds) Biophysics of Consciousness: A Foundational Approach. World Scientific, Singapore.
doi: 10.1016/j.plrev.2013.08.002 pmid: 24070914
[31] Hamerroff, S. R., Watt, R. C., Borel, J. D. and Carlson, G. (1982) General anesthetics directly inhibit electron mobility: dipole dispersion theory of anesthetic action. Physiological Chemistry and Physics 14, 183-187.
[32] Hameroff, S. R. and Watt, R. C. (1983) Do anesthetics act by altering electron mobility? Anesthesia & Analgesia 62, 936-940.
doi: 10.1213/00000539-198310000-00015 pmid: 6614526
[33] Hameroff, S. R., Craddock, T. J. A. and Tuszynski, J. A. (2014) Quantum effects in the understanding of consciousness. Journal of Integrative Neuroscience. 13, 229-252.
doi: 10.1142/S0219635214400093 pmid: 25012711
[34] Hotulainen, P. and Hoogenraad, C. C. (2010) Actin in dendritic spines: connecting dynamics to function. Journal of Cell Biology 189, 619-629.
[35] Heifetz, E., Tsekov, R., Cohen, E. and Nussinov, Z. (2016) On entropy production in the madelung fluid and the role of Bohm’s potential in classical diffusion. Foundations of Physics 46, 815-824.
doi: 10.1007/s10701-016-0003-1
[36] Hiley, B. J. (2002) From the Heisenberg picture to Bohm: a new perspective on active information and its relation to Shannon information. In, A. Khrennikov (ed.) Quantum Theory: Reconsideration of Foundations. Växjä University Press, Sweden.
[37] Holmgren, J . (2014) Natural evolution and human consciousness. Mens Sana Monographs 12, 127-138.
doi: 10.4103/0973-1229.130322 pmid: 4037892
[38] Kaech, S., Brinkhaus, H. and Matus, A . (1999) Volatile anesthetics block actin-based motility in dendritic spines. Proceedings of the National Academy of Sciences (USA) 96, 10433-10437.
doi: 10.1073/pnas.96.18.10433 pmid: 10468626
[39] Kirkaldy, J. S. (1965) Thermodynamics of the human brain. Biophysical Journal 5, 981-986.
[40] Kosloff, R . (2013) Quantum thermodynamics: a dynamical viewpoint. Entropy 15, 2100-2128.
[41] Lewis, E. R. and MacGregor, R. J. (2006) On indeterminism, chaos, and small number particle systems in the brain. Journal of Integrative Neuroscience 5, 223-247.
doi: 10.1142/S0219635206001112 pmid: 16783870
[42] Levine, J . (1983) Materialism and qualia: the explanatory gap. Pacific Philosophical Quarterly 64, 354-361.
doi: 10.1111/j.1468-0114.1983.tb00207.x
[43] Lotka, A. J. (1956) Elements of Mathematical Biology. Dover, New York.
[44] Michaeli, K., Kantor-Uriel, N., Naaman, R. and Waldeck, D. H. (2016) The electron’s spin and molecular chirality—how are they related and how do they affect life processes? Chemistry Society Reviews 45, 6478.
doi: 10.1039/c6cs00369a pmid: 27734046
[45] Mahler, G . (2015) Quantum Thermodynamics: Energy and Information Flow at the Nanoscale. CRC Press, Boca Raton, Fl.
[46] MacGregor, R. J. (2006) Quantum mechanics and brain uncertainty. Journal of Integrative Neuroscience 5, 373-380.
doi: 10.1142/S0219635206001215 pmid: 17125159
[47] Marchetti, G . (2018) Consciousness: a unique way of processing information. Cognitive Processing 19, 435-464.
doi: 10.1007/s10339-018-0855-8 pmid: 29423666
[48] Meijer, D. K. F. and Geesink, H. J. H. (2018) Guided folding of life’s proteins in integrate cells with holographic memory and GM-biophysical steering. Open Journal of Biophysics 8, 117-154.
[49] Mentre, P . (2012) Water in the orchestration of the cell machinery. Some misunderstandings: A short review. Journal of Biological Physics 38, 13-26.
[50] Naaman, R . (2016) Chirality—Beyond the structural effects. Israel Journal of Chemistry 56, 1010-1015.
doi: 10.1002/ijch.201600102
[51] Nagel, T . (1974) What is it like to be a bat? Philosophical Review 83, 435-450.
doi: 10.2307/2183914
[52] Nottale, L . (2014) Macroscopic quantum-type potentials in theoretical systems biology. Cells 1, 1-35.
doi: 10.3390/cells3010001 pmid: 24709901
[53] Pepperell, R . (2018) Consciousness as a physical process caused by the organization of energy in the brain. Frontiers in Psychology 9: 2091.
[54] Poznanski, R. R., Cacha, L. A., Latif, A. Z. A., Salleh, S. H., Ali, J., Yupapin, P., Tuszynski, J. A. and Tengku, M. A. (2018) Spontaneous potentiality as formative cause of thermo-quantum consciousness. Journal of Integrative Neuroscience 17 , 371-385.
[55] Preto, J . (2016) Classical investigation of long-range coherence in biological systems. Chaos 26, 123116-1-13.
doi: 10.1063/1.4971963 pmid: 28039969
[56] Pribram, K. H. (1991) Brain and Perception: Holonomy and Structure in Figural Processing. Lawrence Erlbaum, New Jersey.
[57] Rosenthal, D. M. (1997) A theory of consciousness. In, N. Block, O. Flanagan and G. Güzeldere (eds) The Nature of Consciousness. MIT Press, Camb., MA.
[58] Schiffer, F . (2019) The physical nature of subjective experience and its interaction with the brain. Medical Hypotheses 125, 57-69.
[59] Searle, J. R. (2007) Biological naturalism. In M. Velmans and S. Schneider, eds The Blackwell Companion to Consciousness. Blackwell, Oxford.
[60] Searle, J. R. (2017) Addressing the hard problem of consciousness. In, R.R.Poznanski, J.A. Tuszynski & T.E. Feinberg (eds) Biophysics of Consciousness: A Foundational Approach. World Scientific, Singapore.
[61] Sbitnev, V. I. (2009) Bohmian trajectories and the path integral paradigm: complexified Lagrangian mechanics. International Journal of Bifurcation and Chaos 19, 2335-2346.
doi: 10.1142/S0218127409024104
[62] Song, D . (2018) Visualization of information. NeuroQuantology 16, 32-36.
[63] Tory Toole, J., Kurian, P. and Craddock, T. J. A. (2018) Coherent energy transfer and the potential implications for consciousness. Journal of Cognitive Science 19, 115-124.
[64] Tsekov, R . (2012) Bohmian mechanics versus Madelung quantum hydrodynamics. In, V. Popov (ed.) Ananuire de l’Universite de Sofia, Faculte de Physique, Sofia University Press, Sofia.
[65] Tuszynski, J. A., Portet, S., Dixon, J. M., Luxford, C. and Cantiello, H. F. (2004) Ionic wave propagation along actin filaments. Biophysical Journal 86, 1890-1903.
doi: 10.1016/S0006-3495(04)74255-1 pmid: 15041636
[66] Walshe, F. M. R. (1972). The neurophysiological approach to the problem of consciousness. In, M. Critchley, J.L. O’Learly, B. Jennet (eds.) Scientific Foundations of Neurology. London: Heinemann.
[67] Woolf, N. J. and Butcher, L. L. (2011) Cholinergic systems mediate action from movement to higher consciousness. Behavioural Brain Research 221, 488-498.
doi: 10.1016/j.bbr.2009.12.046 pmid: 20060422
No related articles found!
No Suggested Reading articles found!