Please wait a minute...
Journal of Integrative Neuroscience  2019, Vol. 18 Issue (1): 17-21    DOI: 10.31083/j.jin.2019.01.104
Original Research Previous articles | Next articles
MEG recordings of patients with cerebral palsy before and after the application of pico-Tesla weak magnetic fields
Photios Anninos1, *(), Athanasia Kotini1, Adam Adamopoulos1, Nicolaos Tsagas2
1 Laboratory of Medical Physics, Medical School, Democritus University of Thrace, University Campus, Alexandroupoli 68100, Greece
2 Department of Electrical Engineer, Polytechnic School, Democritus University of Thrace, Alexandroupoli 68100, Greece
Download:  PDF(2696KB)  ( 1415 ) Full text   ( 33 )
Export:  BibTeX | EndNote (RIS)      

MEG data for five cerebral palsy patients were taken using a whole-head 122-channel MEG system. An experiment was designed to identify the possible effect of external pico-Tesla weak magnetic fields. The subjects were five male volunteers 17-46 years of age. External stimulation, field amplitude 1-7.5 pico-Tesla, was applied to each subject at their alpha-rhythm frequency. Fast Fourier transforms were applied to the data of all MEG channels and the rhythms of the patients were evaluated before and after pico-Tesla transcranial magnetic stimulation. The appliance of pico-Tesla weak magnetic fields showed the brains of the cerebral palsy patients had an enhance of the frequencies of (2-7 Hz) for each patient. This was followed by an improvement and normalization of their MEG. The results had a statistical significance in four out of five subjects (80%) and suggested the stimulation provided a positive contribution to the management of the symptoms of cerebral palsy patients.

Key words:  MEG      cerebral palsy      pT-TMS      Fourier transform      alpha frequency     
Submitted:  03 November 2017      Accepted:  11 December 2017      Published:  30 March 2019     
  • General Secretariat of Research and Technology, GR
  • 80623/ERGO AEBE, INC, GR research program 
*Corresponding Author(s):  Photios Anninos     E-mail:

Cite this article: 

Photios Anninos, Athanasia Kotini, Adam Adamopoulos, Nicolaos Tsagas. MEG recordings of patients with cerebral palsy before and after the application of pico-Tesla weak magnetic fields. Journal of Integrative Neuroscience, 2019, 18(1): 17-21.

URL:     OR

Table. 1  Brain regions and their corresponding channels
Brain Regions Channels
Right Temporal 1-14, 111-120
Left Temporal 43-50, 55-62, 67-74
Right Temporal 5-6, 11-16, 97-100, 109, 110, 115-122
Left Parietal 47-52, 59-64, 71-74, 79, 80, 87-90
Frontal 17-42
Occipital 75-86, 91-96, 101-110
Vertex 13-16,49-54,61-66,73,74,89,90,99,100,117-122
Figure 1.  A) Nine second MEG record obtained from a CP patient. B) The application of FFT to the MEG record gives the primary dominant frequency as 2.8 Hz.

Figure 2.  Power spectra map for subject one. A) Before pT-TMS, and B) After pT-TMS.

Figure 3.  Power spectra map for subject two. A) Before pT-TMS, and B) After pT-TMS.

Figure 4.  Power spectra for subject three. A) Before pT-TMS, and B) After pT-TMS.

Figure 5.  Power spectra map for subject four. A) Before pT-TMS, and B) After pT-TMS.

Figure 6.  Power spectra map for patient five. A) Before pT-TMS, and B) After pT-TMS.

Table. 2  Frequency before (BS) and after (AS) pT-TMS for each CP subject. (P: subject number, RT: right temporal, LT: left temporal, RP: right parietal, LP: left parietal, F: frontal, V: vertex, O: occipital)
P RT(f)
1 6 3 4 3 4 3 4 3 4 4 3 2 6 3
2 3 3 3 3 3 4 3 4 3 3 3 3 3 4
3 3 5 3 7 5 6 3 7 3 6 4 7 5 6
4 3 7 4 7 3 7 4 7 3 7 4 7 4 4
5 3 7 3 7 3 7 3 7 4 6 3 7 3 7
Table. 3  Statistical analysis of the five subjects (see Table. 2). p < 0.05 (bold)
Patients Meanf(BS)土 SD Meanf(AS)土 SD p values t-test
1 4.43±1.13 3.00±0.58 0.0117
2 3.00±0.0 3.43±0.53 0.0554
3 3.71±0.95 6.33±0.82 0.0003
4 3.57±0.53 6.57±1.13 0.0001
5 3.14±0.38 6.86±0.38 0.0001
[1] Anninos, P., Adamopoulos, A., Kotini, A., Tsagas, N. (2016 a) Combined MEG and pT-TMS study in parkinson's disease. Journal of Integrative Neuroscience 15, 145-162.
[2] Anninos, P., Adamopoulos, A., Kotini, A., Tsagas, N. (2016 b) MEG evaluation of pico-tesla external TMS on multiple sclerosis patients. Multiple Sclerosis Related Disorders. 8, 45-53.
doi: 10.1016/j.msard.2016.04.008 pmid: 27456873
[3] Anninos, P., Chatzimichael, A., Adamopoulos, A., Kotini, A., Tsagas, N. (2016 c) A combined study of MEG and pico-tesla TMS on children with autism disorder. Journal of Integrative Neuroscience 15, 497-513.
doi: 10.1142/S0219635216500278 pmid: 27875942
[4] Anninos, P., Adamopoulos, A., Kotini, A., Tsagas, N., Tamiolakis, D., Prassopoulos, P. (2007) MEG evaluation of parkinson's diseased patients after external magnetic stimulation. Acta Neurologica Belgica 107, 5-10.
pmid: 17569226
[5] Anninos, P., Kotini, A., Anninou, N., Adamopoulos, A., Papastergiou, A., Tsagas, N. (2008) MEG recordings of patients with CNS disorders before and after external magnetic stimulation. Journal of Integrative Neuroscience 7, 17-27.
doi: 10.1142/S0219635208001745 pmid: 18431816
[6] Anninos, P., Kotini, A., Adamopoulos, A., Tsagas, N. (2003) Magnetic stimulation can modulate seizures in epileptic patients. Brain Topography 16, 57-64.
[7] Anninos, P. A., Adamopoulos, A. V., Kotini, A., Tsagas, N. (2000) Nonlinear analysis of brain activity in magnetic influenced parkinson patients. Brain Topography 13, 135-144.
doi: 10.1023/A:1026611219551 pmid: 11154103
[8] Anninos, P. A. and Tsagas, N. (1995) Electronic apparatus for treating epileptic epileptic individuals. USA patent NO. 5453072.
[9] Anninos, P. A., Tsagas, N. and Adamopoulos, A. (1986) A brain model theory for epilepsy and the mechanism for treatment with experimental verification using SQUID measurements. In, Cotterill R.M. (ed). Models of Brain Function (pp. 405-421). New York: Cambridge University Press.
[10] Anninos, P. A., Beck, B., Csermely, T. J., Harth, E. and Pertile, G. (1970) Dynamics of neural structures. Journal of Theoretical Biology 26, 121-148.
[11] Brandbury, A. J., Kelly, M. E. and Smith, J. A. (1985) Melatonin action in the mid-brain can regulate dopamine function both behaviorally and biochemically. In, Brown, G. M. and Wainwright, S. D. (eds). The Pineal Gland, Endocrine Aspects (pp. 327-332). Oxford: Pergamom Press.
doi: 10.1016/0022-4731(84)90574-0
[12] Hameed, M. Q., Dhamne, S. C., Gersner, R., Kaye, H. L., Oberman, L. M., Pascual-Leone, A. and Rotenberg, A. (2017) Transcranial magnetic and direct current stimulation in children. Current Neurology and Neuroscience Reports 17, 11-15.
doi: 10.1007/s11910-017-0719-0 pmid: 28229395
[13] John, E. R. (1967) Mechanisms of Memory in Representational Systems. New York: Academic Press.
[14] Lissoni, P., Esposti, D., Esposti, G., Mauri, R., Resentini, M., Morabito, F., Fumagalli, P., Santagostino, A., Delitala, G. and Fraschini, F. (1986) A clinical study on the relationship between the pineal gland and the opioid system. Journal of Neural Transmission 65, 63-73.
doi: 10.1007/BF01249612 pmid: 2937880
[15] Pihko, E., Nevalainen, P., Vaalto, S., Laaksonen, K., Mäenpää, H., Valanne, L. and Lauronen, L. (2014) Reactivity of sensorimotor oscillations is altered in children with hemiplegic cerebral palsy: a magnetoencephalographic study. Human Brain Mapping 35, 4105-4117.
doi: 10.1002/hbm.22462 pmid: 24522997
[1] Songtao Ren, Weidong Liu, Li Wang, Changli Guo, Qi Pang. Utilization of electromyography during selective obturator neurotomy to treat spastic cerebral palsy accompanied by scissors gait[J]. Journal of Integrative Neuroscience, 2019, 18(3): 305-308.
No Suggested Reading articles found!