Please wait a minute...
Journal of Integrative Neuroscience  2019, Vol. 18 Issue (1): 87-93    DOI: 10.31083/j.jin.2019.01.103
Original Research Previous articles |
The effect of odor exposure time on olfactory cognitive processing: An ERP study
Bang-bei Tang1, #, Xin Wei2, 3, #, Gang Guo5, Feng Yu3, Ming Ji4, Haiyang Lang2, *(), Junye Liu2, *()
1 School of Electromechanic Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
2 Department of Radiation Medicine, Fourth Military Medical University, Xi'an 710032, China
3 Institute of Social Psychology, School of Humanities and Social Sciences, Xi’an Jiaotong University, Xi'an 710049, China
4 School of Psychology, Shaanxi Normal University, 199 South Chang’an Road, Xi'an 710062, China
5 College of Automotive Engineering, Chongqing University, Chongqing 400044, China
Download:  PDF(4152KB)  ( 850 ) Full text   ( 63 )
Export:  BibTeX | EndNote (RIS)      

The present study aimed to investigate the effects of stimulus time duration on central nervous odor processing. Twenty-one young healthy males participate in our study. There are three odor mixtures in this study and every odor mixture has two different duration time (300 ms; 500 ms). The odor was presented via a computer - controlled olfactometer and EEG was recorded from 64 scalp locations. At behavioral level, the longer the odor stimulus was presented, the greater the concentration was perceived by participants. Electrophysiological data showed that longer duration time lengthened the latency of Negative waves of about 200 ms appeared in stimulation (N2) and Positive waves of about 300 ms appeared in stimulation (P3) components, besides, have a larger N2 amplitude than the shorter duration time condition in the mid-frontal and left frontal-temporal areas. These results revealed that duration time of odor mixture do have an influence on the central nervous odor processing.

Key words:  Odor mixture      oddball paradigm      olfaction      odor processing      event-related potentials     
Submitted:  10 January 2018      Accepted:  29 April 2018      Published:  30 March 2019     
  • 51375510/National Natural Science Foundation of China
  • 106112017CDJXF330013/Fundamental Research Funds for the Central Universities' China
*Corresponding Author(s):  Junye Liu E-mail:; Haiyang Lang Email:   
# These authors contribute equally.

Cite this article: 

Bang-bei Tang, Xin Wei, Gang Guo, Feng Yu, Ming Ji, Haiyang Lang, Junye Liu. The effect of odor exposure time on olfactory cognitive processing: An ERP study. Journal of Integrative Neuroscience, 2019, 18(1): 87-93.

URL:     OR

Figure 1.  The distribution map of 64-channel EEG electrodes in human brain.

Figure 2.  The waveform diagram of each stimulus and duration time in the midline sites and the topographic map of target’s P3 amplitude.

Figure 3.  The waveform diagram of target stimulus in different time duration at LFT and RFT and the topographic map for N2 component.

[1] Anderson, A. K., Christoff, K., Stappen, I., Panitz, D., Ghahremani, D. G., Glover, G., Gabrieli, J. D., Sobel, N. (2003) Dissociated neural representations of intensity and valence in human olfaction. Nature Neuroscience 6, 196-202.
[2] Barry, R. J., Pascalis, V. D., Hodder, D., Clarke, A. R., Johnstone, S. J. (2003) Preferred eeg brain states at stimulus onset in a fixed interstimulus interval auditory oddball task and their effects on erp components. International Journal of Psychophysiology Official. Journal of the International Organization of Psychophysiology 47, 187-198.
doi: 10.1016/S0167-8760(02)00151-4 pmid: 12663064
[3] Campanella, S., Gaspard, C., Debatisse, D., Bruyer, R., Crommelinck, M., Guerit, J. M. (2002) Discrimination of emotional facial expressions in a visual oddball task: an erp study. Biological Psychology 59, 171-186.
[4] Covington, J. W., Geisler, M. W., Polich, J., Murphy, C. (1999) Normal aging and odor intensity effects on the olfactory event-related potential International. Journal of Psychophysiology 32, 205-214.
doi: 10.1016/S0167-8760(99)00012-4 pmid: 10437632
[5] Firestein, S. (2001) How the olfactory system makes sense of scents. Nature 413, 211-218.
doi: 10.1038/35093026 pmid: 11557990
[6] Gottfried, J. A. (2006) Smell: central nervous processing. Adv Otorhinolaryngol 63, 44-69.
[7] Hirata, K. and Lehmann, D. (1990) N1 and p2 of frequent and rare event-related potentials show effects and after-effects of the attended target in the oddball-paradigm. International Journal of Psychophysiology 9, 293-301.
doi: 10.1016/0167-8760(90)90061-H pmid: 2276947
[8] Hummel, T., Doty, R. L., Yousem, D. M. (2005) Functional mri of intranasal chemosensory trigeminal activation. Chemical Senses 30, i205-6.
doi: 10.1093/chemse/bjh186 pmid: 15738116
[9] Hummel, T., Iannilli, E., Frasnelli, J., Boyle, J. A., Gerber, J. (2010) Central processing of trigeminal activation in humans. Annals of the New York Academy of Sciences 1170, 190-195.
[10] Iannilli, E., Bitter, T., Gudziol, H., Burmeister, H. P., Mentzel, H. J., Chopra, A. P. (2011) Differences in anosmic and normosmic group in bimodal odorant perception: a functional-MRI study. Rhinology 49, 458-463.
[11] Kayser, J., Tenke, C. E., Malaspina, D., Kroppmann, C. J., Schaller, J. D., Deptula, A., Gates, N. A., Harkavy-friedman, J. M., Gil, R., Bruder, G. E. (2010) Neuronal generator patterns of olfactory event-related brain potentials in schizophrenia. Psychophysiology 47, 1075-1086.
doi: 10.1111/j.1469-8986.2010.01013.x pmid: 20456657
[12] Lorig, T. S. (2000) The application of electroencephalographic techniques to the study of human olfaction: A review and tutorial. International Journal of Psychophysiology 36, 91-104.
doi: 10.1016/S0167-8760(99)00104-X pmid: 10742565
[13] Lötsch, J. and Hummel, T. (2006) The clinical significance of electrophysiological measures of olfactory function. Behavioural Brain Research 170, 78-83.
doi: 10.1016/j.bbr.2006.02.013 pmid: 16563529
[14] Malnic, B., Godfrey, P. A., Buck, L. B. (2004) The human olfactory receptor gene family. Proceedings of the National Academy of Sciences of the United States of America 101, 2584-2589.
doi: 10.1073/pnas.0308051100 pmid: 14983052
[15] Maurage, P., Callot, C., Philippot, P., Rombaux, P., De, T. P. (2011) Chemosensory event-related potentials in alcoholism: a specific impairment for olfactory function. Biological Psychology 88, 28-36.
doi: 10.1016/j.biopsycho.2011.06.004 pmid: 21718751
[16] Morgan, C. D., Geisler, M. W., Covington, J. W., Polich, J., Murphy, C. (2010) Olfactory p3 in young and older adults. Psychophysiology 36, 281-287.
doi: 10.1017/S0048577299980265 pmid: 10352551
[17] Murphy, C., Morgan, C. D., Geisler, M. W., Wetter, S., Covington, J. W., Madowitz, M. D., Nordina, S., Polich, J. M. (2000) Olfactory event-related potentials and aging: Normative data. International Journal of Psychophysiology 36, 133-145.
doi: 10.1016/S0167-8760(99)00107-5 pmid: 10742568
[18] Olofsson, J. K., Ericsson, E., Nordin, S. (2008) Comparison of chemosensory auditory and visual event-related potential amplitudes. Scandinavian Journal of Psychology 49, 231-237.
doi: 10.1111/j.1467-9450.2008.00647.x pmid: 18419588
[19] Olofsson, J. K. and Nordin, S. (2004) Gender differences in chemosensory perception and event-related potentials. Chemical Senses 29, 629-637.
doi: 10.1093/chemse/bjh066 pmid: 15337687
[20] Pause, B. M., Hellmann, G., Goder, R., Aldenhoff, J. B., Ferstl, R. (2008) Increased processing speed for emotionally negative odors in schizophrenia. International Journal of Psychophysiology 70, 16-22.
doi: 10.1016/j.ijpsycho.2008.04.003 pmid: 18514341
[21] Polich, J., Howard, L., Starr, A. (2010) P300 latency correlates with digit span. Psychophysiology 20, 665-669.
doi: 10.1111/j.1469-8986.1983.tb00936.x pmid: 6657855
[22] Rombaux, P., Mouraux, A., Bertrand, B., Guerit, J. M., Hummel, T. (2006) Assessment of olfactory and trigeminal function using chemosensory event-related potentials. Neurophysiologie Clinique 36, 53-62.
doi: 10.1016/j.neucli.2006.03.005 pmid: 16844543
[23] Royet, J. and Plailly, J. . (2004) Lateralization of olfactory processes. Chemical Senses 29, 731-745.
[24] Rugg, M. D. and Coles, M. G. H.(1996) Electrophysiology of mind: Event-related brain potentials and cognition. Oxford University Press Oxford 13, 261.
[25] Savic, I., Gulyás, B., Berglund, H. (2002) Odorant differentiated pattern of cerebral activation: comparison of acetone and vanillin. Human Brain Mapping 17, 17-27.
doi: 10.1002/hbm.10045 pmid: 12203685
[26] Stuck, B. A., Frey, S., Freiburg, C., Hormann, K., Zahnert, T., Hummel, T. (2006) Chemosensory event-related potentials in relation to side of stimulation age sex and stimulus concentration. Clinical Neurophysiology 117, 1367-1375.
[27] Tateyama, T., Hummel, T., Roscher, S., Post, H., Kobal, G. (1998) Relation of olfactory event-related potentials to changes in stimulus concentration. Electroencephalography and Clinical Neurophysiology 108, 449-455.
[28] Turetsky, B. I., Kohler, C. G., Gur, R. E., Moberg, P. J. (2008) Olfactory physiological impairment in first-degree relatives of schizophrenia patients. Schizophrenia Research 102, 220-229.
doi: 10.1016/j.schres.2008.03.013 pmid: 18457935
[29] Turetsky, B. I., Moberg, P. J., Owzar, K., Johnson, S. C., Doty, R. L., Gur, R. E. (2003) Physiologic impairment of olfactory stimulus processing in schizophrenia. Biological Psychiatry 53, 403-411.
No related articles found!
No Suggested Reading articles found!