Please wait a minute...
Journal of Integrative Neuroscience  2018, Vol. 17 Issue (4): 393-396    DOI: 10.31083/j.jin.2018.04.0415
Previous articles |
Comparison of functional connectivity metrics using an unsupervised approach: a source resting-state EEG study
Matteo Fraschini1, *(), Margherita Lai1, Luca Didaci1
1 Department of Electrical and Electronic Engineering, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy
Download:  PDF(694KB)  ( 344 ) Full text   ( 27 )
Export:  BibTeX | EndNote (RIS)      

The study of inter-regional synchronization between brain regions represents an important challenge in neuroimaging. Electroencephalography, given the high temporal resolution, allows the investigation of brain activity, connectivity, and network organization in time and frequency domains. Here, some of the most common metrics used to estimate the strength of functional interaction between pairs of brain regions are compared using source reconstructed time-series from resting-state high-density electroencephalography. Results show that the investigated metrics, on the basis of their connectivity profiles, may be naturally grouped into two main clusters. In particular, this finding shows that metrics which tend to limit the effects of volume conduction/signal leakage, although based on different properties of the original signals, may be partitioned into a specific homogeneous cluster, whilst the metrics which do not correct for these effects form a separate cluster. Moreover, this effect is even clearer when the analysis is replicated at scalp level. In conclusion, although within each cluster different metrics may still capture specific connectivity profiles, this study provides evidence that the result of an arbitrary choice of metric that either does or does not correct for volume conduction and signal leakage is more relevant.

Key words:  EEG      connectivity      resting-state      clustering      source      classification     
Submitted:  03 November 2017      Accepted:  03 November 2017      Published:  15 November 2018     
*Corresponding Author(s):  Matteo Fraschini     E-mail:

Cite this article: 

Matteo Fraschini, Margherita Lai, Luca Didaci. Comparison of functional connectivity metrics using an unsupervised approach: a source resting-state EEG study. Journal of Integrative Neuroscience, 2018, 17(4): 393-396.

URL:     OR

Table 1  Properties of FC metrics
FC metric Influenced by Signal leakage correction
AEC Amplitude and phase YES
PLI phase YES
iCOH amplitude and phase YES
PLV phase NO
COH amplitude and phase NO
Fig. 1.  The mean global patterns of connectivity for each of the five FC metrics for source-reconstructed analysis. Brain regions are organized as front (left) to back (right) for the left and the right hemisphere, respectively. Connectivity values are intentionally not given at the same scale.

Figure.2.  Mean silhouette values for K varying from 2 to 6 for the source-reconstructed analysis (left panel) and scalp analysis (right panel).

[1] Friston KJ ( 2011) Functional and effective connectivity: a review. Brain Connectivility 1(1), 13-36.
[2] Kida T, Tanaka E, Kakigi R ( 2016) Multi-dimensional dynamics of human electromagnetic brain activity. Frontiers in Human Neuroscience 9(365), 713.
doi: 10.3389/fnhum.2015.00713 pmid: 26834608
[3] Bastos AM, Schoffelen JM ( 2016) A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Frontiers in Systems Neuroscience 9(Pt 2), 175.
doi: 10.3389/fnsys.2015.00175 pmid: 26778976
[4] Bruns A, Eckhorn R, Jokeit H, Ebner A ( 2000) Amplitude envelope correlation detects coupling among incoherent brain signals. Neuroreport 11(7), 1509-1514.
doi: 10.1097/00001756-200005150-00028 pmid: 10841367
[5] Stam CJ, Nolte G, Daffertshofer A ( 2007) Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Human Brain Mapping 28(11), 1178-1193.
doi: 10.1002/hbm.20346 pmid: 17266107
[6] Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S ( 2004) Identifying true brain interaction from EEG data using the imaginary part of coherency. Clinical Neurophysiology 115(10), 2292-2307.
doi: 10.1016/j.clinph.2004.04.029 pmid: 15351371
[7] Lachaux JP, Rodriguez E, Martinerie J, Varela FJ ( 1999) Measuring phase synchrony in brain signals. Human Brain Mapping 8(4), 194-208.
[8] Mandel L, Wolf E ( 1976) Spectral coherence and the concept of cross-spectral purity. Journal of the Optical Society of America 66(6), 529-535.
doi: 10.1364/JOSA.66.000529
[9] Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR ( 2004) BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Transactions on Biomedical Engineering 51(6), 1034-1043.
[10] La Rocca D, Campisi P, Vegso B, Cserti P, Kozmann G, Babiloni F, DE Vico Fallani F ( 2014) Human brain distinctiveness based on EEG spectral coherence connectivity. IEEE Transactions on Biomedical Engineering 61(9), 2406-2412.
doi: 10.1109/TBME.2014.2317881 pmid: 24759981
[11] Fraschini M, Hillebrand A, Demuru M, Didaci L, Marcialis GL ( 2015) An EEG-based biometric system using eigenvector centrality in resting state brain networks. IEEE Signal Processing Letters 22(6), 666-670.
doi: 10.1109/LSP.2014.2367091
[12] Demuru M, Fara F, Fraschini M ( 2013) Brain network analysis of EEG functional connectivity during imagery hand movements. Journal of Integrative Neuroscience 12(04), 441-447.
doi: 10.1142/S021963521350026X pmid: 24372064
[13] Hämäläinen MS ( 1984) Interpreting measured magnetic fields in the brain: Estimates of current distributions, technical report TKK-F-A559, Helsinki University of Technology.
[14] Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ ( 2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3), 968-980.
[15] Rousseeuw PJ ( 1987) Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics 20, 53-65.
doi: 10.1016/0377-0427(87)90125-7
[1] Bo Rao, Hua Cheng, Yang Fan, Wenjing Zhang, Renji Chen, Yun Peng. Topological properties of the resting-state functional network in nonsyndromic cleft lip and palate children after speech rehabilitation[J]. Journal of Integrative Neuroscience, 2020, 19(2): 285-293.
[2] Rekha Sahu, Satya Ranjan Dash, Lleuvelyn A Cacha, Roman R Poznanski, Shantipriya Parida. Epileptic seizure detection: a comparative study between deep and traditional machine learning techniques[J]. Journal of Integrative Neuroscience, 2020, 19(1): 1-9.
[3] Raheel Zafar, Abdul Qayyum, Wajid Mumtaz. Automatic eye blink artifact removal for EEG based on a sparse coding technique for assessing major mental disorders[J]. Journal of Integrative Neuroscience, 2019, 18(3): 217-229.
[4] Qiang Tian, Song Xu, Yunliang Guo, Jin Li, Mimi Han, Yingjuan Ma, Xunyao Hou, Jian Chen, Dingzhen Luo, Yan Hong, Shanjing Nie, Xueping Liu. Contingent negative variation for the periodicity of migraine attacks without aura[J]. Journal of Integrative Neuroscience, 2019, 18(3): 269-276.
[5] Fatemeh Zareayan Jahromy, Atena Bajoulvand, Mohammad Reza Daliri. Statistical algorithms for emotion classification via functional connectivity[J]. Journal of Integrative Neuroscience, 2019, 18(3): 293-297.
[6] Esmaeil Seraj, Mehran Yazdi, Nastaran Shahparian. Instantaneous fMRI based cerebral parameters for automatic Alzheimer, mild cognitive impairment and healthy subject classification[J]. Journal of Integrative Neuroscience, 2019, 18(3): 261-268.
[7] Zahra Kheradmand Saadi, Mahboobeh Saadat, Ali-Mohammad Kamali, Seyedeh-Saeedeh Yahyavi, Mohammad Nami. Electrophysiological modulation and cognitive-verbal enhancement by multi-session Broca's stimulation: a quantitative EEG transcranial direct current stimulation based investigation[J]. Journal of Integrative Neuroscience, 2019, 18(2): 107-115.
[8] Faraj Al-Marri, Faruque Reza, Tahamina Begum, Wan Hazabbah Wan Hitam, Goh Khean Jin, Jing Xiang. Neural activation patterns and connectivity in visual attention during number and non-number processing: An ERP study using Ishihara pseudoisochromatic plates[J]. Journal of Integrative Neuroscience, 2018, 17(3): 257-270.
[9] Abolfazl Alipour, Sahar Seifzadeh, Hadi Aligholi, Mohammad Nami. QEEG-based neural correlates of decision making in a well-trained eight year-old chess player[J]. Journal of Integrative Neuroscience, 2018, 17(3): 297-306.
[10] Ivan Grbatinić, Nebojsa Milosevic, Dusica Maric. Translaminar neuromorphotopological clustering and classification of dentate nucleus neurons[J]. Journal of Integrative Neuroscience, 2018, 17(2): 105-124.
[11] Shiva Khoshnoud, Mohammad Ali Nazari, Mousa Shamsi. Functional analysis of ADHD in children using nonlinear features of EEG signals[J]. Journal of Integrative Neuroscience, 2018, 17(1): 11-18.
[12] Malihe Sabeti, Reza Boostani, Karim Rastgar. How mental fatigue affects the neural sources of P300 component[J]. Journal of Integrative Neuroscience, 2018, 17(1): 72-81.
No Suggested Reading articles found!