Please wait a minute...
Journal of Integrative Neuroscience  2018, Vol. 17 Issue (3): 249-256    DOI: 10.31083/JIN-180076
Research article Previous articles | Next articles
Thermo-dependence of noxious mechanical heterotopic stimulation-dependent modulation of the spinal dorsal horn response to somatosensory stimulation
J. Meléndez-Gallardo1, 2, A. Eblen-Zajjur2, 3, *()
1 Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran;
2 Centro de Biofísica y Neurociencias, CBN-UC, Facultad de Ciencias de la Salud, Universidad de Carabobo, Valencia, Venezuela;
3 Instituto de Ingeniería Biológica y Médica, Facultades de Ingeniería, Medicina y Biología, Pontificia Universidad Católica de Chile, Vicu?a Mackenna 4860, P.O. 7820436, Santiago de Chile, Chile;
Download:  PDF(234KB)  ( 252 ) Full text   ( 9 )
Export:  BibTeX | EndNote (RIS)      
Abstract  

Despite frequent clinical hyper- or hypothermia cases, the thermal-dependence of the endogenous pain modulation system at the spinal cord is not well understood. The spinal dorsal horn neuronal network responses during mechanical heterotopic noxious stimuli was evaluated at three different body temperatures (34, 37 or 40$^\circ $C) by measurement of lumbar cord dorsum potentials activated by electrical stimulation of the ipsilateral sural nerve in adult thiopental anesthetized rats. A noxious clamp was applied randomly to the tail, right hind paw, right forepaw, muzzle, or left forepaw. Heterotopic noxious stimuli induced a decrease of the negative wave amplitude and duration at 37$ {}^\circ $C. This effect was reduced at 40$ {}^\circ $C for both amplitude ($ - $18.2% for 37-40$ {}^\circ $C; p < 0.0005) and duration ($ - $16.4% for 37-40$ {}^\circ $C; p < 0.0001). The P wave showed neither amplitude nor duration changes at either of the three tested temperatures. Clinical range changes of temperature could modify pain sensation, while hyperthermia increased nociceptive sensory input to dorsal horn and exacerbated pain sensation in individuals with fever.

Key words:  Pain modulation      thermo-dependency      spinal dorsal horn      cord dorsum potentials      fever      hypothermia     
Accepted:  06 March 2018      Published:  15 August 2018     
*Corresponding Author(s):  A. Eblen-Zajjur     E-mail:  antonio.eblen@uc.cl

Cite this article: 

J. Meléndez-Gallardo, A. Eblen-Zajjur. Thermo-dependence of noxious mechanical heterotopic stimulation-dependent modulation of the spinal dorsal horn response to somatosensory stimulation. Journal of Integrative Neuroscience, 2018, 17(3): 249-256.

URL: 

https://jin.imrpress.com/EN/10.31083/JIN-180076     OR     https://jin.imrpress.com/EN/Y2018/V17/I3/249

Fig. 1.  Three single CDPs recorded from rat lumbar (L1) spinal cord elicited by sural nerve electrical stimulation (5 mA, 0.5 ms, 0.05 Hz) from the same animal at 34, 37 and 40$ {}^\circ $C during muzzle HNS. After stimulus artifact (S) the N-wave shows an initial sharp and high amplitude negative deflection followed by a smaller amplitude long duration positive wave (P). Note N-wave amplitude changes associated with core body temperature. Time (ms) and amplitude ($ \mu $V) are the same for all traces.

Fig. 2.  Core temperature increase percentage of N-wave amplitude when HNS was applied to tail, contralateral hind paw (CHP), contralateral forepaw (CFP), muzzle and ipsilateral forepaw (IFP). CC Control condition, i.e. recording during sural electrical stimulation without HNS. Label-place of the HNS applies always for the three temperatures (34, 37 and 40$ {}^\circ $C). Black square: tail; empty circle: CHP; dark triangle: CFP; empty square: muzzle; dark circle: IFP. Values are arithmetic mean $ \pm $ S.E.M., analyzed with Kruskal-Wallis and Dunn's tests. $ n = 12$; $ {\ast} p < 0.01$ ; $ {\ast} {\ast} p < 0.001$.

Fig. 3.  Core temperature increase percentage of N-wave duration when HNS was applied in tail, contralateral hind paw (CHP), contralateral forepaw (CFP), muzzle, or ipsilateral forepaw (IFP). CC Control condition, i.e. recorded during sural electrical stimulation without HNS. Label-place of the HNS always applies for the three temperatures (34, 37 and 40$ {}^\circ $C). Black square: tail; empty circle: CHP; dark triangle: CFP; empty square: muzzle; dark circle: IFP. Arithmetic mean $ \pm $ S.E.M., analyzed with Kruskal-Wallis and Dunn's tests. $ n = $ 12; $ \ast p < 0.01$; $ {\ast}{\ast} p < 0.001$.

Table 1  Q$ _{10} $ estimated values for spinal N- and P-wave parameters during mechanical heterotopic noxious stimulation
Q10 (34-37°C) Q10 (37-40°C) M-W U-test
Amplitude
N-wave 1.19 ± 0.04 1.58 ± 0.05 p < 0.001
P-wave 1.26 ± 0.13 1.15 ± 0.15 p > 0.05
Duration
N-wave 1.15 ± 0.04 1.93 ± 0.07 p < 0.001
P-wave 1.25 ± 0.13 1.30 ± 0.15 p > 0. 05
Fig. 4.  Core temperature did not modify P-wave amplitude when HNS was applied to tail, contralateral hind paw (CHP), contralateral forepaw (CFP), muzzle, or ipsilateral forepaw (IFP). CC Control condition, i.e. recorded during sural electrical stimulation without HNS. Label-place of the HNS always applies for the three temperatures (34, 37 and 40$ {}^\circ $C). Black square: tail; empty circle: CHP; dark triangle: CFP; empty square: muzzle; dark circle: IFP. Arithmetic mean $ \pm $ S.E.M., analyzed with Kruskal-Wallis and Dunn's tests. $ n = $ 12.

Fig. 5.  Core temperature did not modify P-wave duration when HNS was applied at tail, contralateral hindpaw (CHP), contralateral forepaw (CFP), muzzle, and ipsilateral forepaw (IFP). CC Control condition, i.e. recording during sural electrical stimulation without HNS. Label-place of the HNS always applies for the three temperatures (34, 37 and 40$ {}^\circ $C). Black square: tail; empty circle: contralateral hindpaw (CHP); dark triangle: contralateral forepaw (CFP); empty square: muzzle; dark circle: ipsilateral forepaw (IFP). Arithmetic mean $ \pm $ S.E.M., Kruskal-Wallis and Dunn's tests. $ n = $ 12.

[1] Moser E, Mathiesen I, Andersen P ( 1993) Association between brain temperature and dentate field potentials in exploring and swimming rats. Science 259( 5099), 1324-1326.
doi: 10.1126/science.8446900 pmid: 8446900
[2] Fawley JA, Hofmann ME, Largent-Milnes TM, Andresen MC ( 2015) Temperature differentially facilitates spontaneous but not evoked glutamate release from cranial visceral primary afferents. Plos One 10( 5), e0127764.
doi: 10.1371/journal.pone.0127764
[3] Rossi A, Coccia M, Trotta E, Angelini M, Santoro MG ( 2012) Regulation of cyclooxygenase-2 expression by heat: a novel aspect of heat shock factor 1 function in human cells. Plos One 7( 2), e31304.
doi: 10.1371/journal.pone.0031304 pmid: 3586594
[4] Le Bars D, Willer JC ( 2002) Pain modulation triggered by high-intensity stimulation: implication for acupuncture analgesia? International Congress Series 1238, 11-29.
doi: 10.1016/S0531-5131(02)00412-0
[5] Le Bars D, Dickenson AH, Besson JM ( 1979) Diffuse noxious inhibitory controls (DNIC). II. Lack of effect on non-convergent neurones, supraspinal involvement and theoretical implications. Pain 6( 3), 305-327.
doi: 10.1016/0304-3959(79)90050-2 pmid: 460936
[6] Le Bars D, Dickenson AH, Besson JM ( 1979) Diffuse noxious inhibitory controls (DNIC). I. Effects on dorsal horn convergent neurones in the rat. Pain 6( 3), 283-304.
doi: 10.1016/0304-3959(79)90049-6
[7] Shimoji K ( 1995) Origins and properties of spinal cord evoked potentials. In, Dimitrijevic MR and Halter JA (eds) Atlas of human spinal cord evoked potentials (pp. 1-25). Boston, Butterworth-Heinemann.
[8] Rudomin P, Jimenez I, Quevedo J, Solodkin M ( 1990) Pharmacologic analysis of inhibition produced by last-order intermediate nucleus interneurons mediating nonreciprocal inhibition of motoneurons in cat spinal cord. Journal of Neurophysiology 63( 1), 147-160.
doi: 10.1007/BF01869608 pmid: 2299379
[9] Rudomin P, Solodkin M, Jiménez I ( 1987) Synaptic potentials of primary afferent fibers and motoneurons evoked by single intermediate nucleus interneurons in the cat spinal cord. Journal of Neurophysiology 57( 5), 1288-1313.
doi: 10.1152/jn.1987.57.5.1288
[10] Gomez M, Bosco R, Eblen-Zajjur A ( 2007) Influence of acute hyperglycaemia on the amplitude of nociceptive spinal evoked potentials in healthy rats. International Journal of Neuroscience 117( 11), 1513-1521.
doi: 10.1080/00207450601126350
[11] Meléndez-Gallardo J, Eblen-Zajjur A ( 2016) Noxious mechanical heterotopic stimulation induces inhibition of the spinal dorsal horn neuronal network: analysis of spinal somatosensory-evoked potentials. Neurological Sciences 37( 9), 1491-1497.
doi: 10.1007/s10072-016-2613-y pmid: 27207681
[12] Bevan S ( 2006) Chapter 7 TRP Channels as Thermosensors. Current Topics in Membranes 57, 199-239.
doi: 10.1016/S1063-5823(06)57006-1
[13] Huang J, Zhang X, McNaughton PA ( 2006) Modulation of temperaturesensitive TRP channels. Seminars in Cell & Developmental Biology 17( 6), 638-645.
doi: 10.1016/j.semcdb.2006.11.002 pmid: 17185012
[14] Montell C, Caterina MJ ( 2007) Thermoregulation: channels that are cool to the core. Current Biology 17( 20), R885-R887.
doi: 10.1016/j.cub.2007.08.016
[15] Albus U ( 2012) Guide for the Care and Use of Laboratory Animals, 8th Ed. Laboratory Animals 46( 3), 267-268.
doi: 10.1258/la.2012.150312
[16] Storaci V, Eblen-Zajjur A ( 2014) Nongenomic effect of levothyroxine on the synchronous electrical activity of the spinal dorsal horn in the rat. Somatosensory & Motor Research 31( 1), 23-27.
doi: 10.3109/08990220.2013.819798 pmid: 23919349
[17] Eblen-Zajjur A, Sandkühler J ( 1996) Synchronicity of nociceptive and non-nociceptive adjacent neurons in the spinal dorsal horn of the rat: stimulus-induced plasticity. Neuroscience 76( 1), 39-54.
doi: 10.1016/S0306-4522(96)00286-2 pmid: 8971757
[18] Heitler WJ ( 2007) DataView: A Tutorial Tool for Data Analysis. Template-based Spike Sorting and Frequency Analysis. Journal of Undergraduate Neuroscience Education 6( 1), A1-A7.
pmid: 3592673
[19] Hammer ø, Harper DAT, Ryan PD ( 2009) PAST-PAlaeontological STatistics, ver. 1.89. Palaeontol Electron 4( 1), 1-92.
[20] Willis WD, Coggeshall RE ( 2012) Sensory mechanisms of the spinal cord: Volume 1 primary afferent neurons and the spinal dorsal horn. Boston, MA: Springer US.
[21] Bannister K, Patel R, Goncalves L, Townson L, Dickenson AH ( 2015) Diffuse noxious inhibitory controls and nerve injury: restoring an imbalance between descending monoamine inhibitions and facilitations. Pain 156( 9), 1803-1811.
doi: 10.1097/j.pain.0000000000000240
[22] de Resende MA, Silva LFS, Sato K, Arendt-Nielsen L, Sluka KA ( 2011) Blockade of opioid receptors in the medullary reticularis nucleus dorsalis, but not the rostral ventromedial medulla, prevents analgesia produced by diffuse noxious inhibitory control in rats with muscle inflammation. The Journal of Pain 12( 6), 687-697.
doi: 10.1016/j.jpain.2010.12.009 pmid: 3954524
[23] Berendsen HH, Kloosterboer HJ ( 2003) Oestradiol and mirtazapine restore the disturbed tail-temperature of oestrogen-deficient rats. European Journal of Pharmacology 482( 1-3), 329-333.
doi: 10.1016/j.ejphar.2003.09.061 pmid: 14660040
[24] Vanegas H, Schaible HG ( 2001) Prostaglandins and cycloxygenases in the spinal cord. Progress in Neurobiology 64( 4), 327-363.
doi: 10.1016/S0301-0082(00)00063-0
[25] Evans SS, Repasky EA, Fisher DT ( 2015) Fever and the thermal regulation of immunity: the immune system feels the heat. Nature Reviews Immunology 15( 6), 335-349.
doi: 10.1038/nri3843 pmid: 25976513
[26] Alfonsi E, Merlini G, Giorgetti A, Ceroni M, Piccolo G, Agostinis C, Savoldi F ( 1987) Temperature-related changes in sensory nerve conduction: studies in normal subjects and in patients with paraproteinaemia. Electromyography and Clinical Neurophysiology 27( 5), 277-282.
pmid: 3665812
[27] Chaudhry V, Crawford TO, Derossett SE ( 1993) Thermal sensitivity in demyelinating neuropathy. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine 16( 3), 301-306.
doi: 10.1002/mus.880160310 pmid: 7753133
[28] Rutkove SB, Kothari MJ, Shefner JM ( 1997) Nerve, muscle, and neuromuscular junction electrophysiology at high temperature. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine 20( 4), 431-436.
doi: 10.1002/(SICI)1097-4598(199704)20:4<431::AID-MUS5>3.0.CO;2-B pmid: 9121500
[29] Vanegas H, Schaible HG ( 2004) Descending control of persistent pain: inhibitory or facilitatory? Brain Research Reviews 46( 3), 295-309.
doi: 10.1016/j.brainresrev.2004.07.004 pmid: 15571771
[30] Zeilhofer HU ( 2005) Synaptic modulation in pain pathways. In, MP Blaustein et al.( Eds.) Reviews of Physiology, Biochemistry and Pharmacology (pp. 73-100). Berlin, Heidelberg, Springer.
doi: 10.1007/s10254-005-0043-y pmid: 16059718
[31] Sandkühler J, Eblen-Zajjur A, Fu QG, Forster C ( 1995) Differential effects of spinalization on discharge patterns and discharge rates of simultaneously recorded nociceptive and non-nociceptive spinal dorsal horn neurons. Pain 60( 1), 55-65.
doi: 10.1016/0304-3959(94)00088-V pmid: 7715942
[32] Razavi M, Hansson P, Johansson B, Leffler AS ( 2014) The influence of intensity and duration of a painful conditioning stimulation on conditioned pain modulation in volunteers. European Journal of Pain 18( 6), 853-861.
doi: 10.1002/j.1532-2149.2013.00435.x pmid: 24347556
[33] Itomi Y, Tsukimi Y, Kawamura T ( 2016) Impaired diffuse noxious inhibitory controls in specific alternation of rhythm in temperaturestressed rats. European Journal of Pharmacology 784, 61-68.
doi: 10.1016/j.ejphar.2016.05.011
[34] WillisWDand Coggeshall RE ( 1978) Sensory Mechanisms of the Spinal Cord. New York, Wiley, Chichester and Plenum.
[35] Harden L, Kent S, Pittman Q, Roth J ( 2015) Fever and sickness behavior: friend or foe? Brain, Behavior, and Immunity 50, 322-333.
[36] Karshikoff B, Jensen K, Kosek E, Kalpouzos G, Soop A, Ingvar M, Höglund CO, Lekander M, Axelsson J ( 2016) Why sickness hurts: a central mechanism for pain induced by peripheral inflammation. Brain, Behavior, and Immunity 57, 38-46.
doi: 10.1016/j.bbi.2016.04.001 pmid: 27058164
No related articles found!
No Suggested Reading articles found!