Please wait a minute...
Journal of Integrative Neuroscience  2018, Vol. 17 Issue (3): 193-202    DOI: 10.31083/JIN-170074
Research article | Next articles
Human neurophysiological markers of high anxiety level during preparation for visual recognition
Evgeniy A. Cheremushkin1, *(), Nadezda E. Petrenko1, Irina A. Yakovenko1, Sergei A. Gordeev2, Nikolay N. Alipov2, Olga V. Sergeeva2
1 Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
2 Pirogov Russian National Research Medical University, Moscow, Russia
Download:  PDF(628KB)  ( 335 ) Full text   ( 56 )
Export:  BibTeX | EndNote (RIS)      
Abstract  

The functional state of subjects with high and low levels of anxiety is studied by electroencephalograph analysis of different temporal periods preceding a cognitive task of visual expression recognition. Several conditions are investigated: background/eyes closed; background/eyes opened; listening to instructions for the cognitive task; operative rest (time lapse between listening to instructions and the beginning of the task); as well as short intervals immediately preceding exposure to target stimuli (preparatory stage), which were paired facial images with identical or different emotional expressions. At all these pre-task stages, high-anxiety subjects exhibit much lower electroencephalograph amplitude values for alpha and theta bands (as compared with low-anxiety subjects). The most prominent differences in electroencephalograph amplitude values revealed during the phases of listening to instructions and operative rest. These datum may provide more precise electrophysiological markers of the level of anxiety during conditions preceding cognitive task performance.

Key words:  Anxiety      electroencephalograph      alpha rhythm      prefrontal cortex      preparatory processes      face recognition     
Submitted:  14 August 2017      Accepted:  07 November 2017      Published:  15 August 2018     
*Corresponding Author(s):  Evgeniy A. Cheremushkin     E-mail:  khton@mail.ru

Cite this article: 

Evgeniy A. Cheremushkin, Nadezda E. Petrenko, Irina A. Yakovenko, Sergei A. Gordeev, Nikolay N. Alipov, Olga V. Sergeeva. Human neurophysiological markers of high anxiety level during preparation for visual recognition. Journal of Integrative Neuroscience, 2018, 17(3): 193-202.

URL: 

https://jin.imrpress.com/EN/10.31083/JIN-170074     OR     https://jin.imrpress.com/EN/Y2018/V17/I3/193

Table 1  Results of ANOVA of the amplitudes of the Alpha and Theta band EEG in subjects with high and low levels of anxiety.
Alpha band Theta band
df F p df F p
Condition 11;52 18.675 0.000 11; 20 6.619 0.000
Condition x Gr 11;52 2.336 0.020 4; 109 2.909 0.029
lead 19; 44 23.417 0.000 12; 19 9.711 0.000
Lead x Gr 19; 44 2.511 0.006 12; 19 1.146 0.415
Lead x Condition 1;62 47.201 0.000 1; 30 7.99 0.000
Lead x Condition x Gr 1;62 1.270 0.264 1; 30 0.806 0.376
Fig. 1.  Amplitude values of the EEG alpha-waves, calculated by means of wavelet-transform, in different leads in subjects with high and low anxiety levels. On the vertical axis - the mean values of the wavelet transformation coefficient (WTC), standard units (s.u.), on the horizontal axis - experimental conditions: 1 - background/eyes closed; 2 - background/eyes opened; 3 - listening to instruction; 4 - operative rest. Dashed boxes - high-anxiety group, open boxes - low-anxiety group. The asterisk (*) corresponds to significant $ (p < 0.05) $ between-group differences, as calculated by one-way ANOVA. Standard errors are shown.

Fig. 2.  Amplitude values of the EEG theta-waves, in different leads in subjects with high and low anxiety levels. Other indications same as in Fig. 1.

Fig. 3.  Schematic maps of differences in alpha-rhythm power (8-13.5 Hz) between HA and LA groups in the condition preceding the presentation of facial stimuli. 4 EEG 1-s fragments were recorded; times in seconds before stimulus presentation are given below corresponding maps. I - pairs of faces with different expression; II - pairs of faces with identical expression. Gray-filled circles represent leads with significantly $(p < 0.05)$ higher values in the LA group, as calculated by one-way ANOVA. Top - a schematic map of EEG leads.

Fig. 4.  Schematic maps of differences in theta-rhythm power (4-7.5 Hz) between HA and LA groups in the condition preceding the presentation of facial stimuli. Other indications are the same as for Fig. 3.

Table 2  Mean values of the oscillation power of alpha band (EEG leads FT7, FT8) in groups with low (LA) and high (HA) levels of anxiety in different conditions of the experiment. Conditions: (1) background/eyes closed; (2) background/eyes opened; (3) listening to instructions for the cognitive task; (4) operative rest; 5-12: 1 s intervals immediately before the task performance: 4 for presentation of faces with different expressions, 4 for presentation of faces with identical expression. $ {F} $, $ {p} $ - one-way ANOVA results. Error of mean is shown.
FT7 FT8
LA HA F / p LA HA F / p
1 148.52 ± 19.50 137.63 ± 16.43 0.42/0.67 128.39 ± 5.96 108.19 ± 8.63 1.92/0.063
2 104.19 ± 7.28 94.59 ± 7.57 0.91/0.364 95.84 ± 5.43 78.36 ± 4.32 2.51/0.014
3 130.82 ± 11.37 101.07 ± 9.02 2.04/0.044 107.73 ± 5.52 79.31 ± 4.71 3.91/0.000
4 118.87 ± 9.21 97.23 ± 9.76 1.61/0.112 110.49 ± 5.15 86.70 ± 4.94 3.33/0.001
5 110.16 ± 7.32 98.42 ± 5.52 1.28/0.205 98.26 ± 3.54 82.01 ± 4.44 2.85/0.005
6 110.51 ± 6.60 96.96 ± 5.35 1.59/0.116 100.12 ± 3.68 84.19 ± 4.87 2.60/0.011
7 112.14 ± 7.16 94.18 ± 5.28 2.01/0.048 100.46 ± 3.75 82.91 ± 4.74 2.90/0.005
8 112.42 ± 7.23 95.36 ± 5.09 1.93/0.058 100.17 ± 3.86 83.22 ± 4.26 2.94/0.004
9 111.24 ± 6.15 99.75 ± 6.92 1.24/0.219 98.07 ± 3.28 84.26 ± 4.27 2.55/0.012
10 112.01 ± 6.40 98.52 ± 7.42 1.37/0.173 97.62 ± 3.45 81.67 ± 4.26 2.90/0.005
11 111.53 ± 6.10 98.25 ± 7.43 1.38/0.172 96.44 ± 3.49 82.73 ± 4.24 2.49/0.015
12 109.00 ± 5.88 98.49 ± 7.05 1.14/0.257 95.87 ± 3.75 81.48 ± 4.21 2.55/0.013
Table 3  Mean values of the oscillation power of theta band (EEG leads FT7, FT8) in groups with low (LA) and high (HA) levels of anxiety under the different experimental conditions. Designations as in Table 2.
FT7 FT8
LA HA F/P LA HA F/P
1 148.52 ± 19.50 137.63 ± 16.43 0.42/0.67 128.39 ± 5.96 108.19 ± 8.63 1.92/0.063
2 139.16 ± 15.89 122.63 ± 16.36 0.72/0.47 123.66 ± 8.52 102.15 ± 8.83 1.75/0.089
3 192.62 ± 20.82 142.75 ± 16.50 1.87/0.07 168.07 ± 13.27 118.12 ± 11.14 2.88/0.007
4 202.7 ± 25.14 147.16 ± 15.16 1.89/0.06 166.01 ± 11.39 131.44 ± 10.49 2.23/0.033
5 145.88 ± 14.46 126.47 ± 10.56 1.08/0.28 132.44 ± 5.53 112.07 ± 8.79 1.96/0.059
6 149.72 ± 13.35 126.93 ± 11.21 1.30/0.20 133.14 ± 5.98 112.73 ± 7.81 2.07/0.046
7 145.07 ± 14.83 121.34 ± 8.90 1.37/0.18 135.41 ± 7.97 105.58 ± 7.80 2.67/0.012
8 147.64 ± 14.06 119.36 ± 9.19 1.68/0.10 135.10 ± 8.08 106.12 ± 7.86 2.57/0.015
9 145.86 ± 11.95 126.36 ± 11.78 1.16/0.25 134.55 ± 7.13 112.81 ± 7.94 2.04/0.049
10 141.96 ± 11.30 122.37 ± 12.23 1.17/0.24 129.35 ± 7.20 106.92 ± 7.38 2.17/0.037
11 141.78 ± 10.37 123.06 ± 12.73 1.13/0.26 130.37 ± 6.80 107.51 ± 8.01 2.17/0.037
12 136.57 ± 10.33 121.42 ± 12.02 0.95/0.34 129.08 ± 7.20 103.22 ± 7.15 2.54/0.01
[1] Kessler RC, Aguilar-Gaxiola S, Alonso J, Chatterji S, Lee S, Ormel J, Üstün TB, Wang PS ( 2009) The global burden of mental disorders: an update from the WHO World Mental Health (WMH) surveys. Epidemiology and Psychiatric Sciences 18(1), 23-33.
doi: 10.1017/S1121189X00001421
[2] Mahmoud JSR ( 2011) The relationship of anxiety, coping, thinking style, life satisfaction, social support, and selected demographics among young adult college students. Dissertations & Theses - Gradworks.
[3] Coan JA, Allen JJ ( 2004) Frontal EEG asymmetry as a moderator and mediator of emotion. Biological Psychology 67( 1, 2), 7-50.
doi: 10.1016/j.biopsycho.2004.03.002 pmid: 15130524
[4] Davidson RJ ( 2002) Anxiety and affective style: role of prefrontal cortex and amygdala. Biological Psychiatry 51( 1), 68-80.
doi: 10.1016/S0006-3223(01)01328-2 pmid: 11801232
[5] Davidson RJ, Sutton SK ( 1995) Affective neuroscience: The emergence of a discipline. Current Opinion in Neurobiology 5( 2), 217-224.
doi: 10.1016/0959-4388(95)80029-8 pmid: 7620310
[6] Knyazev GG, Levin EA, Savostyanov AN ( 2008) Impulsivity, anxiety, and individual differences in evoked and induced brain oscillations. International Journal of Psychophysiology 68( 3), 242-254.
doi: 10.1016/j.ijpsycho.2008.02.010 pmid: 18396343
[7] Mathersul D, Williams LM, Hopkinson PJ, Kemp AH ( 2008) Investigating models of affect: Relationships among EEG alpha asymmetry, depression and anxiety. Emotion 8( 4), 560.
doi: 10.1037/a0012811 pmid: 18729586
[8] Putman P ( 2011) Resting state EEG delta-beta coherence in relation to anxiety, behavioral inhibition, and selective attentional processing of threatening stimuli. International Journal of Psychophysiology 80( 1), 63-68.
doi: 10.1016/j.ijpsycho.2011.01.011 pmid: 21277914
[9] Xing M, Tadayonnejad R, MacNamara A, Ajilore O, DiGangi J, Phan KL, Leow A, Klumpp H ( 2017) Resting-state theta band connectivity and graph analysis in generalized social anxiety disorder. NeuroImage: Clinical 13, 24-32.
doi: 10.1016/j.nicl.2016.11.009 pmid: 5126152
[10] Hagemann J, Straube T, Schulz C ( 2016) Too bad: Bias for angry faces in social anxiety interferes with identity processing. Neuropsychologia 84, 136-149.
doi: 10.1016/j.neuropsychologia.2016.02.005 pmid: 26878979
[11] Knyazev GG, Savostyanov AN, Bocharov AV, Rimareva JM ( 2016) Anxiety, depression, and oscillatory dynamics in a social interaction model. Brain Research 1644, 62-69.
doi: 10.1016/j.brainres.2016.04.075 pmid: 27173999
[12] Mueller E, Hofmann S, Santesso D, Meuret A, Bitran S, Pizzagalli DA ( 2009) Electrophysiological evidence of attentional biases in social anxiety disorder. Psychological Medicine 39( 7), 1141-1152.
doi: 10.1017/S0033291708004820 pmid: 19079826
[13] Garner M, Baldwin DS, Bradley BP, Mogg K ( 2009) Impaired identifi- cation of fearful faces in Generalised Social Phobia. Journal of Affective Disorders 115( 3), 460-465.
doi: 10.1016/j.jad.2008.10.020 pmid: 19062103
[14] Langenecker SA, Bieliauskas LA, Rapport LJ, Zubieta JK, Wilde EA, Berent S ( 2005) Face emotion perception and executive functioning deficits in depression. Journal of Clinical and Experimental Neuropsychology 27( 3), 320-333.
doi: 10.1080/13803390490490515720 pmid: 15969355
[15] Mogg K, Millar N, Bradley BP ( 2000) Biases in eye movements to threatening facial expressions in generalized anxiety disorder and depressive disorder. Journal of Abnormal Psychology 109( 4), 695.
doi: 10.1037//0021-843X.109.4.695 pmid: 11195993
[16] Blackmon K, Barr WB, Carlson C, Devinsky O, DuBois J, Pogash D, Quinn BT, Kuzniecky R, Halgren E, Thesen T ( 2011) Structural evidence for involvement of a left amygdala-orbitofrontal network in subclinical anxiety. Psychiatry Research: Neuroimaging 194( 3), 296-303.
doi: 10.1016/j.pscychresns.2011.05.007 pmid: 3544472
[17] Blair RJ, Cipolotti L ( 2000) Impaired social response reversal: A case ofacquired sociopathy. Brain 123( 6), 1122-1141.
doi: 10.1093/brain/123.6.1122 pmid: 10825352
[18] Killgore WD, Yurgelun-Todd DA ( 2004) Activation of the amygdala and anterior cingulate during nonconscious processing of sad versus happy faces. Neuroimage 21( 4), 1215-1223.
doi: 10.1016/j.neuroimage.2003.12.033
[19] Phan KL, Wager T, Taylor SF, Liberzon I ( 2002) Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 16( 2), 331-348.
doi: 10.1006/nimg.2002.1087 pmid: 12030820
[20] Spampinato MV, Wood JN, De Simone V, Grafman J ( 2009) Neural correlates of anxiety in healthy volunteers: a voxel-based morphometry study. The Journal of Neuropsychiatry and Clinical Neurosciences 21( 2), 199-205.
doi: 10.1176/appi.neuropsych.21.2.199 pmid: 19622691
[21] Van den Bulk BG, Meens PH, van Lang ND, De Voogd E, van der Wee NJ, Rombouts SA, Crone EA, Vermeiren RR ( 2014) Amygdala activation during emotional face processing in adolescents with affective disorders: the role of underlying depression and anxiety symptoms. Frontiers in Human Neuroscience 8, 393.
doi: 10.3389/fnhum.2014.00393 pmid: 24926249
[22] Cisler J, James G, Tripathi S, Mletzko T, Heim C, Hu X, Mayberg H, Nemeroff C, Kilts C ( 2013) Differential functional connectivity within an emotion regulation neural network among individuals resilient and susceptible to the depressogenic effects of early life stress. Psychological Medicine 43( 3), 507-518.
doi: 10.1017/S0033291712001390 pmid: 22781311
[23] Etkin A, Prater KE, Hoeft F, Menon V, Schatzberg AF ( 2010) Failure of anterior cingulate activation and connectivity with the amygdala during implicit regulation of emotional processing in generalized anxiety disorder. American Journal of Psychiatry 167( 5), 545-554.
doi: 10.1176/appi.ajp.2009.09070931 pmid: 2012391321
[24] Kim MJ, Gee DG, Loucks RA, Davis FC, Whalen PJ ( 2010) Anxiety dissociates dorsal and ventral medial prefrontal cortex functional connectivity with the amygdala at rest. Cerebral Cortex 21( 7), 1667-1673.
doi: 10.1093/cercor/bhq237 pmid: 3116741
[25] Shang J, Fu Y, Ren Z, Zhang T, Du M, Gong Q, Lui S, Zhang W ( 2014) The common traits of the ACC and PFC in anxiety disorders in the DSM-5: meta-analysis of voxel-based morphometry studies. PloS one 9( 3), e93432.
doi: 10.1371/journal.pone.0093432 pmid: 3968149
[26] Stuhrmann A, Suslow T, Dannlowski U ( 2011) Facial emotion processing in major depression: a systematic review of neuroimaging findings. Biology of Mood & Anxiety Disorders 1( 1), 1-17.
doi: 10.1186/2045-5380-1-10 pmid: 3384264
[27] Kostandov E, Cheremushkin E ( 2011) Influences of the loading on working memory on the spatial synchronization of prestimulus cortical electrical activity during recognition of an emotional facial expression. Neuroscience and Behavioral Physiology 41( 6), 591-598.
doi: 10.1007/s11055-011-9460-3
[28] Kostandov E, Kurova N, Cheremushkin E, Petrenko N ( 2008) Dynamics of the spatial organization of cortical electrical activity during the formation and actualization of a cognitive set to facial expression. Neuroscience and Behavioral Physiology 38( 1), 15-22.
doi: 10.1007/s11055-008-0002-6 pmid: 18097755
[29] Kurova N, Cheremushkin E ( 2007) Spectral EEG characteristics during increases in the complexity of the context of cognitive activity. Neuroscience and Behavioral Physiology 37( 4), 379-385.
doi: 10.1007/s11055-007-0024-5 pmid: 17457533
[30] Aftanas LI, Koshkarov VI, Pokrovskaja VL, Lotova NV, Mordvintsev YN ( 1996) Pre-and post-stimulus processes in affective task and eventrelated desynchronization (ERD): Do they discriminate anxiety coping styles? International Journal of Psychophysiology 24( 3), 197-212.
doi: 10.1016/S0167-8760(96)00060-8 pmid: 8993995
[31] Min BK, Kim SJ, Park JY, Park HJ ( 2011) Prestimulus top-down reflection of obsessive-compulsive disorder in EEG frontal theta and occipital alpha oscillations. Neuroscience Letters 496( 3), 181-185.
doi: 10.1016/j.neulet.2011.04.018 pmid: 21527316
[32] Farber D, Machinskaya R, Kurganskii A, Petrenko N ( 2015) Functional organization of the brain during preparation for recognition of image fragments. Neuroscience and Behavioral Physiology 45( 9), 1055-1062.
doi: 10.1007/s11055-015-0185-6
[33] Von Stein A, Chiang C, K¨onig P ( 2000) Top-down processing mediated by interareal synchronization. Proceedings of the National Academy of Sciences 97( 26), 14748-14753.
doi: 10.1073/pnas.97.26.14748
[34] Zhang Y, Wang X, Bressler SL, Chen Y, Ding M ( 2008) Prestimulus cortical activity is correlated with speed of visuomotor processing. Journal of Cognitive Neuroscience 20( 10), 1915-1925.
doi: 10.1162/jocn.2008.20132 pmid: 18370597
[35] Kostandov E, Cheremushkin E, Yakovenko I, Petrenko N ( 2015) Induced synchronization of the alpha rhythm during the pauses between visual stimuli with different levels of cognitive set plasticity. Neuroscience and Behavioral Physiology 45( 2), 154-163.
doi: 10.1007/s11055-015-0053-4
[36] Kostandov EA ( 2015) The Role of Implicit Estimation of Time Intervals and Set Plasticity in Facial Expression Processing. Cognitive Systems Monographs 25; 349-366.
doi: 10.1007/978-3-319-19446-2_21
[37] Kostandov E, Farber D, Cheremushkin E, Petrenko N, Ashkinazi M ( 2011) Spatial synchronization of the q and a band cortical electrical oscillations in the formation of a set to an angry face expression in 5-to 11-year-old children. Human Physiology 37( 5), 519.
doi: 10.1134/S0362119711050082
[38] Kostandov E, Farber D, Machinskaya R, Cheremushkin E, Petrenko N, Ashkinazi M ( 2011) Spatial synchronization of cortical electrical activity at different stages of a visual set in 8-year-old children with different levels of development of the frontothalamic selective attention system. Neuroscience and Behavioral Physiology 41( 3), 329-335.
doi: 10.1007/s11055-011-9420-y
[39] Tallon-Baudry C, Bertrand O, Peronnet F, Pernier J ( 1998) Induced g-band activity during the delay of a visual short-term memory task in humans. Journal of Neuroscience 18( 11), 4244-4254.
doi: 10.1097/00005072-199806000-00010 pmid: 9592102
[40] Gordeev S, Kovrov G, Posokhov S, Katenko S ( 2015) Psychophysiological characteristics of nonepileptic paroxysmal disorders. Neuroscience and Behavioral Physiology 45( 4), 375-383.
doi: 10.1007/s11055-015-0085-9
[41] Tian X, Wei D, Du X, Wang K, Yang J, Liu W, Meng J, Liu H, Liu G, Qiu J ( 2016) Assessment of trait anxiety and prediction of changes in state anxiety using functional brain imaging: A test-retest study. Neuroimage 133, 408-416.
doi: 10.1016/j.neuroimage.2016.03.024 pmid: 27001499
[42] Buss KA, Schumacher JRM, Dolski I, Kalin NH, Goldsmith HH, Davidson RJ ( 2003) Right frontal brain activity, cortisol, and withdrawal behavior in 6-month-old infants. Behavioral Neuroscience 117( 1), 11.
doi: 10.1037/0735-7044.117.1.11 pmid: 12619903
[43] Kalin NH, Shelton SE, Davidson RJ ( 2000) Cerebrospinal fluid corticotropin-releasing hormone levels are elevated in monkeys with patterns of brain activity associated with fearful temperament. Biological Psychiatry 47( 7), 579-585.
doi: 10.1016/S0006-3223(99)00256-5 pmid: 10745049
[44] Hsieh LT, Ranganath C ( 2014) Frontal midline theta oscillations during working memory maintenance and episodic encoding and retrieval. Neuroimage 85, 721-729.
doi: 10.1016/j.neuroimage.2013.08.003 pmid: 23933041
[45] Lega BC, Jacobs J, Kahana M ( 2012) Human hippocampal theta oscillations and the formation of episodic memories. Hippocampus 22( 4), 748-761.
doi: 10.1002/hipo.20937 pmid: 21538660
[46] Nyhus E, Curran T ( 2010) Functional role of gamma and theta oscillations in episodic memory. Neuroscience & Biobehavioral Reviews 34( 7), 1023-1035.
doi: 10.1016/j.neubiorev.2009.12.014 pmid: 20060015
[47] Bollinger J, Rubens MT, Zanto TP, Gazzaley A ( 2010) Expectationdriven changes in cortical functional connectivity influence working memory and long-term memory performance. Journal of Neuroscience 30( 43), 14399-14410.
doi: 10.1523/JNEUROSCI.1547-10.2010
[48] Palva S, Kulashekhar S, H¨am´’al¨ainen M, Palva JM ( 2011) Localization of cortical phase and amplitude dynamics during visual working memory encoding and retention. Journal of Neuroscience 31( 13), 5013-5025.
doi: 10.1523/JNEUROSCI.5592-10.2011 pmid: 21451039
[49] Patten TM, Rennie CJ, Robinson PA, Gong P ( 2012) Human cortical traveling waves: dynamical properties and correlations with responses. PloS One 7( 6), e38392.
doi: 10.1371/journal.pone.0038392 pmid: 3366935
[50] Yamagishi N, Callan DE, Anderson SJ, Kawato M ( 2008) Attentional changes in pre-stimulus oscillatory activity within early visual cortex are predictive of human visual performance. Brain Research 1197, 115-122.
doi: 10.1016/j.brainres.2007.12.063 pmid: 18241846
[51] Min BK, Herrmann CS ( 2007) Prestimulus EEG alpha activity reflects prestimulus top-down processing. Neuroscience Letters 422( 2), 131-135.
doi: 10.1016/j.neulet.2007.06.013 pmid: 17611028
[52] Van Dijk H, Schoffelen JM, Oostenveld R, Jensen O ( 2008) Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability. Journal of Neuroscience 28( 8), 1816-1823.
doi: 10.1523/JNEUROSCI.1853-07.2008 pmid: 18287498
[53] Crawford HJ, Knebel TL, Vendemia JM, Kaplan L, Ratcliff B ( 1995) EEG activation patterns during tracking and decision-making tasks- Differences between low and high sustained attention adults. In International Symposium on Aviation Psychology, 8 th, Columbus, OH (pp. 886-890).
[54] Cooper NR, Croft RJ, Dominey SJ, Burgess AP, Gruzelier JH ( 2003) Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypotheses. International Journal of Psychophysiology 47( 1), 65-74.
doi: 10.1016/S0167-8760(02)00107-1 pmid: 12543447
[55] Scheeringa R, Petersson KM, Oostenveld R, Norris DG, Hagoort P, Bastiaansen MC ( 2009) Trial-by-trial coupling between EEG and BOLD identifies networks related to alpha and theta EEG power increases during working memory maintenance. Neuroimage 44( 3), 1224-1238.
doi: 10.1016/j.neuroimage.2008.08.041 pmid: 18840533
[56] Fell J, Ludowig E, Staresina BP, Wagner T, Kranz T, Elger CE, Axmacher N ( 2011) Medial temporal theta/alpha power enhancement precedes successful memory encoding: evidence based on intracranial EEG. Journal of Neuroscience 31( 14), 5392-5397.
doi: 10.1523/JNEUROSCI.3668-10.2011 pmid: 21471374
[57] Guderian S, Schott BH, Richardson-Klavehn A, D¨uzel E ( 2009) Medial temporal theta state before an event predicts episodic encoding success in humans. Proceedings of the National Academy of Sciences 106( 13), 5365-5370.
doi: 10.1073/pnas.0900289106 pmid: 19289818
[58] Kleberg FI, Kitajo K, Kawasaki M, Yamaguchi Y ( 2014) Ongoing theta oscillations predict encoding of subjective memory type. Neuroscience Research 83, 69-80.
doi: 10.1016/j.neures.2014.02.010 pmid: 24602686
[59] Wang C, Ulbert I, Schomer DL, Marinkovic K, Halgren E ( 2005) Responses of human anterior cingulate cortex microdomains to error detection, conflict monitoring, stimulus-response mapping, familiarity, and orienting. Journal of Neuroscience 25( 3), 604-613.
doi: 10.1523/JNEUROSCI.4151-04.2005 pmid: 15659596
[60] Schutter DJ, van Honk J, d’Alfonso AA, Postma A, de Haan EH ( 2001) Effects of slow rTMS at the right dorsolateral prefrontal cortex on EEG asymmetry and mood. Neuroreport 12( 3), 445-447.
doi: 10.1097/00001756-200103050-00005 pmid: 11234743
[61] Desimone R, Duncan J ( 1995) Neural mechanisms of selective visual attention. Annual Review of Neuroscience 18( 1), 193-222.
doi: 10.1146/annurev.ne.18.030195.001205
[62] Gyurak A, Gross JJ, Etkin A ( 2011) Explicit and implicit emotion regulation: a dual-process framework. Cognition and Emotion 25( 3), 400-412.
doi: 10.1080/02699931.2010.544160 pmid: 3280343
[63] Blair KS, Geraci M, Smith BW, Hollon N, DeVido J, Otero M, Blair JR, Pine DS ( 2012) Reduced dorsal anterior cingulate cortical activity during emotional regulation and top-down attentional control in generalized social phobia, generalized anxiety disorder, and comorbid generalized social phobia/generalized anxiety disorder. Biological Psychiatry 72( 6), 476-482.
doi: 10.1016/j.biopsych.2012.04.013 pmid: 22592057
[64] Gray JA McNaughton N (2000) The Neuropsychology of Anxiety: An Enquiry Into the Functions of the Septo-hippocampal System. 2nd edn, Oxford University Press.
[1] Taryn Chalmers, Shamona Maharaj, Ty Lees, CT Lin, Phillip Newton, Roderick Clifton-Bligh, Craig S McLachlan, Sylvia M Gustin, Sara Lal. Impact of acute stress on cortical electrical activity and cardiac autonomic coupling[J]. Journal of Integrative Neuroscience, 2020, 19(2): 239-248.
[2] Songyun Xie, Yabing Li. EEG effective connectivity networks for an attentive task requiring vigilance based on dynamic partial directed coherence[J]. Journal of Integrative Neuroscience, 2020, 19(1): 111-118.
[3] Shun Wang, Shanping Mao, Baozhen Yao, Dan Xiang, Congcong Fang. Effects of low-frequency repetitive transcranial magnetic stimulation on depression- and anxiety-like behaviors in epileptic rats[J]. Journal of Integrative Neuroscience, 2019, 18(3): 237-243.
[4] Esther Lázaro, Maitane Garca, Imanol Amayra, Juan-Francisco López-Paz, Oscar Martnez, Manuel Pérez, Sarah Berrocoso, Mohammad Al Rashaida, Paula Fernández, Alicia Rodrguez, Amaia Jometón, Begoña Ruz. Anxiety and depression in Chiari malformation[J]. Journal of Integrative Neuroscience, 2018, 17(4): 343-348.
[5] Andrey F. Iznak, Ekaterina V. Iznak, Tatiana P. Klyushnik, Georgy M. Kobel'kov, Elena V. Damjanovich, Igor V. Oleichik, Lilia I. Abramova. Neurobiological parameters in quantitative prediction of treatment outcome in schizophrenic patients[J]. Journal of Integrative Neuroscience, 2018, 17(3): 221-228.
[6] Elham Askari, Seyed Kamaledin Setarehdan, Ali Sheikhani, Mohammad Reza Mohammadi, Mohammad Teshnehlab. Computational model for detection of abnormal brain connections in children with autism[J]. Journal of Integrative Neuroscience, 2018, 17(3): 237-248.
[7] Abolfazl Alipour, Sahar Seifzadeh, Hadi Aligholi, Mohammad Nami. QEEG-based neural correlates of decision making in a well-trained eight year-old chess player[J]. Journal of Integrative Neuroscience, 2018, 17(3): 297-306.
[8] M. Thilaga, Vijayalakshmi Ramasamy, R. Nadarajan, D. Nandagopal. Shortest path based network analysis to characterize cognitive load states of human brain using EEG based functional brain networks[J]. Journal of Integrative Neuroscience, 2018, 17(2): 133-148.
[9] Zhendong Mu, Jinhai Yin, Jianfeng Hu. Application of a brain-computer interface for person authentication using EEG responses to photo stimuli[J]. Journal of Integrative Neuroscience, 2018, 17(1): 53-60.
No Suggested Reading articles found!