Please wait a minute...
Journal of Integrative Neuroscience  2018, Vol. 17 Issue (3): 257-270    DOI: 10.31083/JIN-170058
Research article Previous articles | Next articles
Neural activation patterns and connectivity in visual attention during number and non-number processing: An ERP study using Ishihara pseudoisochromatic plates
Faraj Al-Marri1, 2, Faruque Reza1, *(), Tahamina Begum1, Wan Hazabbah Wan Hitam3, Goh Khean Jin4, Jing Xiang5
1 Department of Neuroscience, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
2 Department of Neuroscience, College of Medicine, King Faisal University, 31982 Hofuf, Al-Ahsa, Saudi Arabia
3 Department of Ophthalmology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
4 Division of Neurology, Faculty Of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
5 Division of Neurology, MEG Center, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45220, USA
Download:  PDF(852KB)  ( 125 ) Full text   ( 16 )
Export:  BibTeX | EndNote (RIS)      
Abstract  

Visual cognitive function is important in the construction of executive function in daily life. Perception of visual number form (e.g. Arabic digits) and numerosity (numeric magnitude) is of interest to cognitive neuroscientists. Neural correlates and the functional measurement of number representations are complex events when their semantic categories are assimilated together with concepts of shape and color. Color perception can be processed further to modulate visual cognition. The Ishihara pseudoisochromatic plates are one of the best and most common screening tools for basic red-green color vision testing. However, there has been little study of visual cognitive function assessment using such pseudoisochromatic plates. 25 healthy normal trichromat volunteers were recruited and studied using a 128-sensor net to record event-related electroencephalogram. Subjects were asked to respond by pressing numbered buttons when they saw the number and non-number plates of the Ishihara color vision test. Amplitudes and latencies of N100 and P300 event related potential components were analyzed from 19 electrode sites in the international 10-20 system. A brain topographic map, cortical activation patterns, and Granger causation (effective connectivity) were analyzed from 128 electrode sites. No significant differences between N100 event related potential components for either stimulus indicates early selective attention processing was similar for number and non-number plate stimuli, but non-number plate stimuli evoked significantly higher amplitudes, longer latencies of the P300 event related potential component with a slower reaction time compared to number plate stimuli imply the allocation of attentional load was more in non-number plate processing. A different pattern of the asymmetric scalp voltage map was noticed for P300 components with a higher intensity in the left hemisphere for number plate tasks and higher intensity in the right hemisphere for non-number plate tasks. Asymmetric cortical activation and connectivity patterns revealed that number recognition occurred in the occipital and left frontal areas where as the consequence was limited to the occipital area during the non-number plate processing. Finally, results demonstrated that the visual recognition of numbers dissociates from the recognition of non-numbers at the level of defined neural networks. Number recognition was not only a process of visual perception and attention, but was also related to a higher level of cognitive function, that of language.

Key words:  Visual number recognition      event related potential      pseudoisochromatic plates      N100 and P300 event      attention      effective connectivity     
Accepted:  17 October 2017      Published:  15 August 2018     
*Corresponding Author(s):  Faruque Reza     E-mail:  faruquereza@gmail.com

Cite this article: 

Faraj Al-Marri, Faruque Reza, Tahamina Begum, Wan Hazabbah Wan Hitam, Goh Khean Jin, Jing Xiang. Neural activation patterns and connectivity in visual attention during number and non-number processing: An ERP study using Ishihara pseudoisochromatic plates. Journal of Integrative Neuroscience, 2018, 17(3): 257-270.

URL: 

https://jin.imrpress.com/EN/10.31083/JIN-170058     OR     https://jin.imrpress.com/EN/Y2018/V17/I3/257

Fig. 1.  Graphical representation of experimental procedure with number and non-number plates of the Ishihara color vision test.

Fig. 2.  Mean RT during presentation of number (white dotted column with standard error bars) and non-number (black column with standard error bars) plates of an Ishihara color vision test. RT was significantly increased for non-number plates indicating subjects responded to number plates more rapidly than non-number plates.

Table 1  Peak amplitude of N100 ERP component $ \mu $ V (mean $ \pm $ SD)
Number plate Non-number plate Wilcoxon Paired T-test
Sites Mean ±SD Variance Mean ±SD Variance Z-value p-value t df p-value
Fp1 1.91 2.22 4.91 1.43 1.92 3.7 -1.197b 0.231 1.36 24 0.186
F3 1.47 2.43 5.92 1.66 1.66 2.76 -0.632c 0.527 -0.54 24 0.598
F7 1.18 1.49 2.23 1.32 1.31 1.72 -1.117c 0.264 -0.45 24 0.657
Fp2 2.22 2.3 5.28 1.37 2.05 4.19 -1.897b 0.058 2.33 24 0.028*
F4 1.94 1.81 3.29 1.51 1.72 2.97 -1.009b 0.313 1.3 24 0.206
F8 1.64 1.14 1.29 1.14 1.25 1.57 -1.628b 0.104 1.82 24 0.082
C3 1.58 1.41 1.98 1.73 1.61 2.6 -0.256c 0.798 -0.61 24 0.55
C4 1.79 1.26 1.58 1.6 1.23 1.53 -0.444b 0.657 0.75 24 0.464
T3 0.99 1.11 1.23 1.57 1.16 1.34 -1.870c 0.061 -1.95 24 0.063
T4 1.72 1.21 1.47 2.02 1.82 3.33 -0.309c 0.757 -0.81 24 0.429
P3 1.77 1.3 1.69 1.6 1.16 1.34 -0.659b 0.51 0.73 24 0.473
T5 2.08 2.19 4.81 2.15 1.47 2.18 -0.498c 0.619 -0.19 24 0.853
P4 2.61 1.07 1.14 2.3 1.36 1.84 -1.251b 0.211 1.05 24 0.306
T6 3.09 1.65 2.71 3.17 2.45 5.99 -0.309b 0.757 -0.18 24 0.855
O1 2.42 2.77 7.66 2.18 2.08 4.34 -1.170b 0.242 0.57 24 0.577
O2 2.88 2.68 7.18 2.62 2.34 5.5 -0.605b 0.545 0.72 24 0.479
Fz 1.68 1.86 3.46 1.63 1.84 3.39 -0.040c 0.968 0.16 24 0.871
Cz 1.9 1.89 3.58 1.89 1.59 2.52 -0.256c 0.798 0.04 24 0.971
Pz 2.02 1.48 2.2 1.82 1.48 2.19 -0.955b 0.339 0.55 24 0.586
Table 2  Latencies for N100 ERP component (mean $ \pm $ SD ms)
Number plate Non-number plate Wilcoxon Paired T-test
Sites Mean ± SD Variance Mean ± SD Variance Z-value p-value t df p-value
Fp1 109.44 19.93 397.17 111.84 17.79 316.64 -0.419b 0.675 -0.52 24 0.610
F3 105.44 17.88 319.84 104.8 19.83 393.33 -0.284c 0.776 0.13 24 0.900
F7 112.48 25.75 663.09 120.48 25.07 628.43 -1.22b 0.222 -1.38 24 0.182
Fp2 107.36 22.59 510.24 117.28 22.62 511.63 -2.14b 0.032* -1.8 24 0.085
F4 102.88 16.15 260.69 105.92 20.3 412.16 -0.263b 0.792 -0.81 24 0.423
F8 107.84 20.86 435.31 116.8 23.41 548 -1.88b 0.06 -1.58 24 0.128
C3 102.88 17.3 299.36 98.4 17.93 321.33 -0.681c 0.496 1.05 24 0.306
C4 103.04 19.71 388.37 99.68 20.33 413.23 -0.163c 0.871 0.68 24 0.506
T3 109.12 25.76 663.36 120 27.54 758.67 -1.77b 0.076 -1.85 24 0.076
T4 110.08 31.18 972.16 115.84 28.55 815.31 -0.987b 0.324 -0.82 24 0.422
P3 103.68 26.86 721.23 100.32 25.84 667.89 -0.618c 0.537 0.47 24 0.641
T5 116.64 30.65 939.57 116.48 32.28 1041.76 -0.443b 0.658 0.03 24 0.980
P4 112.32 30.29 917.23 106.56 28.07 787.84 -1.10c 0.27 1.01 24 0.321
T6 110.4 31.03 962.67 118.72 32.84 1078.29 -1.08b 0.28 -1.14 24 0.267
O1 121.44 27.73 769.17 120.8 28.59 817.33 -0.130b 0.897 0.14 24 0.891
O2 122.08 27.43 752.16 125.76 26.96 726.77 -0.919b 0.358 -0.73 24 0.473
Fz 105.76 18.48 341.44 112.16 19.3 372.64 -1.76b 0.078 -1.41 24 0.172
Cz 105.28 19.76 390.29 103.52 17.75 315.09 -0.192c 0.848 0.66 24 0.515
Pz 115.36 25.89 670.24 116.32 27.3 745.23 -0.114b 0.909 -0.17 24 0.870
Table 3  Peak amplitude of P300 ERP component $ \mu $ V (mean $ \pm $ SD)
Number plate Non-number plate Wilcoxon Paired T-test
Sites Mean ± SD Variance Mean ± SD Variance Z-value p-value t df p-value
Fp1 4.28 3.5 12.27 2.84 3.62 13.1 -0.256b 0.798 2.35 24 0.027*
F3 3.08 3.18 10.09 2.77 2.35 5.51 -1.709b 0.088 0.49 24 0.632
F7 1.48 2.73 7.47 1.45 2.43 5.92 -0.525c 0.6 0.04 24 0.966
Fp2 4.91 3.8 14.48 4.21 4.01 16.09 -1.144b 0.253 1.38 24 0.179
F4 3.19 1.79 3.19 3.23 1.65 2.73 -0.013b 0.989 -0.11 24 0.913
F8 1.86 2.16 4.68 1.81 1.48 2.18 -0.094c 0.925 0.12 24 0.907
C3 2.97 2.2 4.84 3.28 2.55 6.51 -0.309c 0.757 -0.62 24 0.542
C4 3.85 1.89 3.59 4.2 1.95 3.78 -0.982c 0.326 -0.99 24 0.331
T3 1.99 2.33 5.43 2.43 2.59 6.69 -1.520c 0.128 -0.79 24 0.44
T4 2.25 3.02 9.15 3.76 3.94 15.55 -2.919c 0.004* -3.26 24 0.003*
P3 2.82 2.4 5.77 2.88 1.81 3.28 -0.605c 0.545 -0.15 24 0.879
T5 2.12 1.96 3.84 2.79 2.24 5.04 -1.359c 0.174 -1.38 24 0.179
P4 2.83 1.88 3.55 3.31 2.08 4.34 -1.574c 0.115 -1.68 24 0.105
T6 1.62 2.65 7.03 2.98 3.02 9.11 -2.839c 0.005* -2.66 24 0.014*
O1 1.7 2.76 7.64 1.99 2.65 7.05 -1.063c 0.288 -0.63 24 0.533
O2 1.24 2.5 6.24 1.61 3.01 9.04 -0.632c 0.527 -0.85 24 0.404
Fz 3.35 2.51 6.3 3.06 2.32 5.38 -0.767b 0.443 0.84 24 0.409
Cz 3.99 2.93 8.6 4.41 2.29 5.23 -0.740c 0.459 -0.71 24 0.485
Pz 3.3 2.92 8.51 2.89 2.68 7.17 -0.955b 0.339 0.63 24 0.535
Table 4  Latencies for P300 ERP component (mean $ \pm $ SD ms)
Number plate Non-number plate Wilcoxon Paired T-test
Sites Mean ± SD Variance Mean ± SD Variance Z-value p-value t df p-value
Fp1 508.8 160.43 25737.33 511.2 162.47 26397.33 -0.568b 0.57 -0.08 24 0.938
F3 488.64 113.02 12772.91 522.24 112.24 12597.44 -1.339b 0.181 -1.60 24 0.124
F7 416.16 131.12 17191.31 433.12 118.8 14114.03 -0.639b 0.523 -0.58 24 0.569
Fp2 516.16 160.41 25729.97 488 155.05 24041.33 -0.834c 0.404 1.01 24 0.325
F4 518.08 121.31 14716.16 511.04 116.47 13564.37 -0.557c 0.577 0.23 24 0.820
F8 504.16 152.21 23168.64 512.64 146.27 21394.24 -0.341b 0.733 -0.27 24 0.789
C3 501.12 132.44 17540.69 528.16 95.16 9055.307 -0.672b 0.502 -0.87 24 0.391
C4 549.12 117.73 13859.36 544.16 93.18 8681.973 -0.757c 0.449 0.22 24 0.829
T3 475.52 132.17 17468.43 483.84 147.53 21764.64 -0.390b 0.697 -0.40 24 0.691
T4 508.16 138.56 19197.97 497.6 125.14 15660 -0.304c 0.761 0.31 24 0.761
P3 468.64 127.63 16290.24 494.72 95.17 9056.96 -0.972b 0.331 -0.93 24 0.363
T5 419.52 101.2 10241.76 438.4 119.78 14346.67 -0.900b 0.368 -0.90 24 0.375
P4 456.64 116.85 13652.91 509.28 124.93 15606.29 -1.272b 0.203 -2.00 24 0.057
T6 404.16 97.98 9599.307 459.36 125.62 15780.91 -1.758b 0.079 -2.04 24 0.053
O1 401.76 119.86 14365.44 418.24 121.41 14740.11 -1.188b 0.235 -0.74 24 0.467
O2 407.52 150.21 22564.43 423.04 134.2 18009.71 -1.413b 0.158 -0.56 24 0.584
Fz 499.84 136.75 18700.64 503.36 130.76 17098.24 -0.061b 0.951 -0.1 24 0.921
Cz 531.84 113.29 12835.31 548.64 89.61 8030.24 -0.486b 0.627 -0.68 24 0.506
Pz 461.12 144.99 21023.36 521.12 122.52 15011.36 -2.100b 0.036* -2.07 24 0.049*
Table 5  Cortical activation patterns during number and non-number plate viewing in relation to N100 and P300 ERP components with closer EEG electrode positions (19 electrodes in 10-20 international system)
ERP components MNI x, y & z coordinates (millimetres) Brodmann's area (BA), L-left, R-right Cortical regions EEG electrode positions
Number
N100 -5768 LBA39 Inferior Parietal Lobule - Intraparietal sulcus - Angular gyrus P3, T5
-56 -28 14 LBA41 Temporal lobe - Auditory cortex T3
17 70 6 RBA10 Prefrontal Cortex Fp2
P300 -44 -29 14 LBA40 Inferior Parietal Lobule - Supramarginal gyrus C3, P3
-47 17 0 LBA45 Inferior Frontal gyrus - Pars Triangularis (Broca's Area) F7, F3
50 -49 24 RBA20 Inferior temporal, Fusiform and Parahippocampal gyri T4, F8
17 69 2 RBA10 Prefrontal cortex Fp2
Non-number
N100 -28 -94 7 LBA18 Occipital lobe - Secondary visual cortex O1
-19 -61 5 LBA23 Posterior Singulate Gyrus Pz
P300 -55 -56 14 LBA39 Inferior parietal lobule - intraparietal sulcus - Angular gyrus P3, T5
-3070 LBA22 Superior Temporal Gyrus (Wernicke's area) T3
-7624 LBA17 Occipital lobe - Primary visual Cortex O1
46 -78 14 RBA19 Occipital Lobe (Secondary visual cortex) O2, T6
58 -49 14 RBA39 Inferior parietal lobule - intraparietal sulcus - Angular gyrus P4, T6
45 -25 14 RBA40 Inferior parietal lobule (Supramarginal gyrus) C4, P4
Fig. 3.  Arrangement of the grand average waveform of ERP components at 19 scalp sites of electrode channels during the presentation session of number (grey line) and non-number plates (black line), small vertical solid and dotted bars indicate segment time = 0 & stimulation presentation time, respectively. Central rectangle gives scale.

Fig. 4.  EEG waveform, scalp topography, and cortical activations during number plate task. Upper left panel of figure (A), EEG time series of all 128 channels, y-axis and x-axis give amplitude ($ \mu $V) & time (ms), respectively, white and red dotted lines indicate stimulation start time marked at 0 ms peak N100 ERP response (104 ms), respectively. Upper right panel gives scalp topographic map plotted from N100 peak. Lower panel of figure (A), cortical activations of N100 peak response are displayed as MRI 3D view with color bar (left side) and as axial MRI view with color bar (right side). Lower left panel of figure (B), EEG time series of 128 channels, y-axis and x-axis gives amplitude ($ \mu $V) & time (ms), respectively. White dotted line gives stimulation start time (0 ms) and red line denotes peak P300 ERP response (492 ms), upper right panel shows scalp topographic map plotted from P300 peak. Lower panel of figure (A), cortical activations of P300 peak response are displayed on MRI 3D view with color bar (left side) and with axial MRI viewer, color bar (right side).

Fig. 5.  EEG waveform, scalp topography, and cortical activations during non-number plate task. Upper left panel (A), EEG time series of all 128 channels, y-axis and x-axis give amplitude ($ \mu $V) & time (ms) respectively, white dotted line gives stimulation start time (0 ms) and red line gives peak N100 ERP response (100 ms), upper right panel shows scalp topographic map plot at N100 peak. Lower panel (A), cortical activations of N100 peak response are displayed as MRI 3D view with color bar (left side) and as axial MRI view with color bar (right side). Lower left panel (B), EEG time series of 128 channels, y-axis and x-axis give amplitude ($ \mu $V) & time (ms), respectively, white dotted line gives stimulation start time (0 ms) and red line indicates peak P300 ERP response (540 ms), upper right panel gives scalp topographic map plotted at P300 peak. Lower panel (A), cortical activations of P300 peak response are given as MRI 3D view with color bar (left side) and as an axial MRI view with color bar (right side).

Fig. 6.  Effective connectivity visualization from grand averaged wave form during presentation of number plates of an Ishihara color vision test from all recorded 128 channels of EGI system, circle indicates 19 electrode sites in 10-20 international system.

Fig. 7.  Effective connectivity visualization from grand averaged waveform during presentation of non-number plates of an Ishihara color vision test from all recorded 128 channels of EGI system, circle indicates 19 electrode sites in 10-20 international system.

[1] DeYoe EA, Van Essen DC ( 1988) Concurrent processing streams in monkey visual cortex. Trends in Neurosciences 11( 5), 219-226.
doi: 10.1016/0166-2236(88)90130-0 pmid: 2471327
[2] Köhler S, Kapur S, Moscovitch M, Winocur G, Houle S ( 1995) Dissociation of pathways for object and spatial vision: a PET study in humans. Neuroreport: an International Journal for the Rapid Communication of Research in Neuroscience 6( 14), 1865-1868
doi: 10.1097/00001756-199510020-00011 pmid: 8547586
[3] Chang S, Pearson J ( 2017) The functional effects of prior motion imagery and motion perception. Cortex: a Journal Devoted to the Study of the Nervous System and Behavior 105, 83-96
[4] Roldan SM ( 2017) Object recognition in mental representations: Directions for exploring diagnostic features through visual mental imagery. Frontiers in Psychology 8, 833.
doi: 10.3389/fpsyg.2017.00833
[5] Sharpe LT, Stockman A, Jägle H, Nathans J ( 1999) Opsin genes, cone photopigments, color vision, and color blindness. Color vision: From Genes to Perception, 3-51.
[6] Smith VC, Pokorny J ( 1996) The design and use of a cone chromaticity space: a tutorial. Color Research & Application 21( 5), 375-383.
[7] Belcher S, Greenshields K, Wright W ( 1958) Colour vision survey: using the Ishihara, Dvorine, Boström and Kugelberg, Boström, and American-Optical Hardy-Rand-Rittler tests. The British Journal of Ophthalmology 42( 6), 355.
doi: 10.1136/bjo.42.6.355 pmid: 13546565
[8] Dain SJ ( 2004) Clinical colour vision tests. Clinical and Experimental Optometry 87( 4, 5), 276-293.
doi: 10.1111/cxo.2004.87.issue-4-5
[9] Arend LE, Reeves A, Schirillo J, Goldstein R ( 1991) Simultaneous color constancy: papers with diverse Munsell values. Journal of the Optical Society of America 8( 4), 661-672.
doi: 10.1364/JOSAA.8.000661 pmid: 2045968
[10] Fairchild MD ( 2013) Color appearance models. West Sussex, John Wiley & Sons.
[11] Goodale MA, Milner AD ( 1992) Separate visual pathways for perception and action. Trends in Neurosciences 15( 1), 20-25.
doi: 10.1016/0166-2236(92)90344-8 pmid: 1374953
[12] Mishkin M, Ungerleider LG, Macko KA ( 1983) Object vision and spatial vision: two cortical pathways. Trends in Neurosciences 6, 414-417.
doi: 10.1016/0166-2236(83)90190-X
[13] Knops A ( 2017) Probing the neural correlates of number processing. The Neuroscientist 23( 3), 264-274.
doi: 10.1177/1073858416650153 pmid: 27188457
[14] Connaughton VM, Amiruddin A, Clunies-Ross KL, French N, Fox AM ( 2017) Assessing hemispheric specialization for processing arithmetic skills in adults: A functional transcranial doppler ultrasonography (fTCD) study. Journal of Neuroscience Methods 283, 33-41.
doi: 10.1016/j.jneumeth.2017.03.010
[15] Dehaene S ( 1992) Varieties of numerical abilities. Cognition 44( 1, 2), 1-42.
doi: 10.1016/0010-0277(92)90049-N
[16] Neisser U ( 1977) Cognitive psychology. Science 198, 816-817.
doi: 10.1126/science.198.4319.816
[17] Barsalou LW ( 2014) Cognitive psychology: An overview for cognitive scientists. Hillsdale, NJ, US, Lawrence Erlbaum Associates.
[18] De Raad , B( 2006) Individuality and Personality, Psychological Concepts: An International Historical Perspective. In, Pawlik K and d’Ydewalle G (Eds.)Psychological Concepts: An International Historical Perspective(pp. 299-323).East Sussex, UK, Psychology Press.
[19] MS M ( 1997) Cognition and Reality by Ulric Neisser. The American Journal of Psychology 90( 3), 541-543.
[20] Miller EK, Cohen JD ( 2001) An integrative theory of prefrontal cortex function. Annual Review of Neuroscience 24( 1), 167-202.
doi: 10.1146/annurev.neuro.24.1.167 pmid: 11283309
[21] Yeo DJ, Wilkey ED, Price GR ( 2017) The search for the number form area: A functional neuroimaging meta-analysis. Neuroscience & Biobehavioral Reviews 78, 145-160.
doi: 10.1016/j.neubiorev.2017.04.027 pmid: 28467892
[22] Sporns O, Honey CJ, Kötter R ( 2007) Identification and classification of hubs in brain networks. Plos One 2( 10), e1049.
doi: 10.1371/journal.pone.0001049 pmid: 2013941
[23] Esposito F, Bertolino A, Scarabino T, Latorre V, Blasi G, Popolizio T, Tedeschi G, Cirillo S, Goebel R, Di Salle F ( 2006) Independent component model of the default-mode brain function: Assessing the impact of active thinking. Brain Research Bulletin 70( 4-6), 263-269.
doi: 10.1016/j.brainresbull.2006.06.012 pmid: 17027761
[24] Horovitz SG, Fukunaga M, de Zwart JA, van Gelderen P, Fulton SC, Balkin TJ, Duyn JH ( 2008) Low frequency BOLD fluctuations during resting wakefulness and light sleep: A simultaneous EEG-fMRI study. Human Brain Mapping 29( 6), 671-682.
doi: 10.1002/hbm.20428 pmid: 17598166
[25] Bassett DS, Wymbs NF, Porter MA, Mucha PJ, Carlson JM, Grafton ST ( 2011) Dynamic reconfiguration of human brain networks during learning. Proceedings of the National Academy of Sciences 108( 18), 7641-7646.
doi: 10.1073/pnas.1018985108
[26] Hutchison RM, Womelsdorf T, Allen EA, Bandettini PA, Calhoun VD, Corbetta M, Della Penna S, Duyn JH, Glover GH, Gonzalez-Castillo J ( 2013) Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80, 360-378.
doi: 10.1016/j.neuroimage.2013.05.079 pmid: 23707587
[27] Dosenbach NU, Fair DA, Cohen AL, Schlaggar BL, Petersen SE ( 2008) A dual-networks architecture of top-down control. Trends in Cognitive Sciences 12( 3), 99-105.
doi: 10.1016/j.tics.2008.01.001 pmid: 3632449
[28] Koyama MS, Di Martino A, Kelly C, Jutagir DR, Sunshine J, Schwartz SJ, Castellanos FX, Milham MP ( 2013) Cortical signatures of dyslexia and remediation: an intrinsic functional connectivity approach. Plos One 8( 2), e55454.
doi: 10.1371/journal.pone.0055454
[29] Ghuntla TP, Mehta HB, Gokhale PA, Shah CJ ( 2014) Influence of practice on visual reaction time. Journal of Mahatma Gandhi Institute of Medical Sciences 19( 2), 119.
doi: 10.4103/0971-9903.138431
[30] Horowitz-Kraus T, DiFrancesco M, Kay B, Wang Y, Holland SK ( 2015) Increased resting-state functional connectivity of visual-and cognitivecontrol brain networks after training in children with reading difficulties. NeuroImage: Clinical 8, 619-630.
doi: 10.1016/j.nicl.2015.06.010 pmid: 00
[31] Liu J, Zhang H, Chen C, Chen H, Cui J, Zhou X ( 2017) The neural circuits for arithmetic principles. NeuroImage 147, 432-446.
doi: 10.1016/j.neuroimage.2016.12.035
[32] Galton F ( 1880) Visualised Numerals. Nature 21, 494-495.
[33] Ramachandran VS, Hubbard EM ( 2001) Psychophysical investigations into the neural basis of synaesthesia. Proceedings of the Royal Society of London B: Biological Sciences 268( 1470), 979-983.
doi: 10.1098/rspb.2000.1576 pmid: 11370973
[34] Brang D, Hubbard EM, Coulson S, Huang M, Ramachandran VS ( 2010) Magnetoencephalography reveals early activation of V4 in graphemecolor synesthesia. Neuroimage 53( 1), 268-274.
doi: 10.1016/j.neuroimage.2010.06.008 pmid: 20547226
[35] Mattingley JB, Payne JM, Rich AN ( 2006) Attentional load attenuates synaesthetic priming effects in grapheme-colour synaesthesia. Cortex 42( 2), 213-221.
doi: 10.1016/S0010-9452(08)70346-0 pmid: 16683495
[36] Moore T and Zirnsak M ( 2017) Neural Mechanisms of Selective Visual Attention. Annual Review of Psychology 68( 1), 47-72.
doi: 10.1146/annurev.ne.18.030195.001205
[37] Posner MI, Nissen MJ, Ogden WC ( 1978) Attended and unattended processing modes: The role of set for spatial location. In, Modes of Perceiving and Processing Information, pp. 137-157.
[38] Baayen RH, Milin P ( 2010) Analyzing reaction times. International Journal of Psychological Research 3( 2), 12-28.
doi: 10.21500/20112084.807
[39] Laming DRJ ( 1968) Information theory of choice-reaction times. Oxford, England, Academic Press.
[40] Welford AT ( 1980) Choice reaction time: Basic concepts. In, AT. Welford (Eds.)Reaction Times (pp. 73-128). New York, Academic Press.
[41] Lit A, Young RH, Shaffer M ( 1971) Simple time reaction as a function of luminance for various wavelengths. Perception & Psychophysics 10( 6), 397-399.
doi: 10.3758/BF03210320
[42] Misra N, Mahajan K, Maini B ( 1885) Comparative study of visual and auditory reaction time of hands and feet in males and females. Indian Journal of Physiol Pharmacol 29( 4), 213-218.
pmid: 3842374
[43] Spirduso WW ( 1975) Reaction and movement time as a function of age and physical activity level. Journal of Gerontology 30( 4), 435-440.
doi: 10.1093/geronj/30.4.435
[44] Gavkare AM, Nanaware NL, Surdi AD ( 2013) Auditory reaction time, visual reaction time and whole body reaction time in athletes. Indian Medical Gazette 6, 214-219.
[45] Rugani R, Betti S, Ceccarini F, Sartori L ( 2017) Act on numbers: numerical magnitude influences selection and kinematics of finger movement. Frontiers in Psychology 8, 1481.
doi: 10.3389/fpsyg.2017.01481 pmid: 5582418
[46] Sur S, Sinha V ( 2009) Event-related potential: An overview. Industrial Psychiatry Journal 18( 1), 70-73.
doi: 10.4103/0972-6748.57865 pmid: 21234168
[47] Du Y, Zhang Q, Zhang JX ( 2014) Does N200 reflect semantic processing? —An ERP study on Chinese visual word recognition. Plos One 9( 3), e90794.
doi: 10.1371/journal.pone.0090794 pmid: 3951240
[48] Rugg M, Milner A, Lines C, Phalp R ( 1987) Modulation of visual eventrelated potentials by spatial and non-spatial visual selective attention. Neuropsychologia 25( 1), 85-96.
doi: 10.1016/0028-3932(87)90045-5 pmid: 3574653
[49] Vogel AC, Petersen SE, Schlaggar BL ( 2014) The VWFA: it’s not just for words anymore. Frontiers in Human Neuroscience 8, 88.
doi: 10.3389/fnhum.2014.00088 pmid: 3960495
[50] Delb W, Strauss DJ, Low YF, Seidler H, Rheinschmitt A, Wobrock T, D’Amelio R ( 2008) Alterations in Event Related Potentials (ERP) associated with tinnitus distress and attention. Applied Psychophysiology and Biofeedback 33( 4), 211-221.
doi: 10.1007/s10484-008-9065-y pmid: 18836827
[51] van der Stelt O, Kok A, Smulders FT, Snel J, Gunning WB ( 1998) Cerebral event-related potentials associated with selective attention to color: developmental changes from childhood to adulthood. Psychophysiology 35( 3), 227-239.
doi: 10.1111/psyp.1998.35.issue-3
[52] Picton TW ( 1992) The P300 wave of the human event-related potential. Journal of Clinical Neurophysiology 9( 4), 456-479.
doi: 10.1097/00004691-199210000-00002
[53] Polich J, Kok A ( 1995) Cognitive and biological determinants of P300: an integrative review. Biological Psychology 41( 2), 103-146.
doi: 10.1016/0301-0511(95)05130-9 pmid: 8534788
[54] Cavina-Pratesi C, Kentridge R, Heywood C, Milner A ( 2010) Separate channels for processing form, texture, and color: evidence from fMRI adaptation and visual object agnosia. Cerebral Cortex 20( 10), 2319-2332.
doi: 10.1093/cercor/bhp298 pmid: 20100900
[55] Hasan RA, Reza F, Begum T . ( 2016) Education Level is associated with specific N200 and P300 profiles reflecting higher cognitive functioning. Journal of Advances in Medical and Pharmaceutical Sciences 10( 4), 1-12.
[56] Fonteneau E, Davidoff J ( 2007) Neural correlates of colour categories. Neuroreport 18( 13), 1323-1327.
doi: 10.1097/WNR.0b013e3282c48c33 pmid: 17762706
[57] Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM ( 2011) Brainstorm: a user-friendly application for MEG/EEG analysis. Computational Intelligence and Neuroscience 2011,879716.
doi: 10.1155/2011/879716 pmid: 3090754
[58] Niso G, Bruña R, Pereda E, Guti´errez R, Bajo R, Maest´u F, del-Pozo F ( 2013) HERMES: towards an integrated toolbox to characterize functional and effective brain connectivity. Neuroinformatics 11( 4), 405-434.
doi: 10.1007/s12021-013-9186-1 pmid: 23812847
[59] Miyahara E ( 2008) Errors reading the Ishihara pseudoisochromatic plates made by observers with normal colour vision. Clinical and Experimental Optometry 91( 2), 161-165.
doi: 10.1111/j.1444-0938.2007.00210.x pmid: 18271779
[60] Cosstick M, Robaei D, Rose K, Rochtchina E, Mitchell P ( 2005) Numerical confusion errors in ishihara testing: findings from a populationbased study. American Journal of Ophthalmology 140( 1), 154-156.
doi: 10.1016/j.ajo.2005.01.002 pmid: 16038669
[61] Luck S ( 2005) An introduction to the event-related potential technique. Massachusetts, The MIT Press.
[62] Van Overwalle F, Van den Eede S, Baetens K , VandekerckhoveM( 2009) Trait inferences in goal-directed behavior: ERP timing and localization under spontaneous and intentional processing. Social Cognitive and Affective Neuroscience 4( 2), 177-190.
doi: 10.1093/scan/nsp003 pmid: 2686230
[63] Spence C, Parise C ( 2010) Prior-entry: A review. Consciousness and Cognition 19( 1), 364-379.
doi: 10.1016/j.concog.2009.12.001
[64] Hopf J-M, Vogel E, Woodman G, Heinze HJ, Luck SJ ( 2002) Localizing visual discrimination processes in time and space. Journal of Neurophysiology 88( 4), 2088-2095.
doi: 10.1152/jn.00860.2001 pmid: 12364530
[65] Eimer M ( 2014) The time course of spatial attention: insights from event-related brain potentials. The Oxford Handbook of Attention 1, 289-317.
[66] Chayer C, Freedman M ( 2001) Frontal lobe functions. Current Neurology and Neuroscience Reports 1( 6), 547-552.
doi: 10.1007/s11910-001-0060-4
[67] Hansenne M ( 2000) The p300 cognitive event-related potential. I. Theoretical and psychobiologic perspectives. Clinical Neurophysiology 30( 4), 191-210.
doi: 10.1016/S0987-7053(00)00223-9
[68] Patrick CJ, Bernat EM, Malone SM, Iacono WG, Krueger RF, McGue M ( 2006) P300 amplitude as an indicator of externalizing in adolescent males. Psychophysiology 43( 1), 84-92.
doi: 10.1111/j.1469-8986.2006.00376.x pmid: 2242347
[69] Polich J ( 1999), P300 in clinical applications. In: E. Niedermeyer and F. Lopes da Silva, (eds) Electroencephalography: Basic Principles, Clinical Applications and Related Fields(pp. 1073-1091), 4th edn. Urban & Schwarzenberg, Baltimore.
[70] Dehaene S, Kerszberg M, Changeux JP ( 1998) A neuronal model of a global workspace in effortful cognitive tasks. Proceedings of the National Academy of Sciences 95( 24), 14529-14534.
doi: 10.1111/j.1749-6632.2001.tb05714.x pmid: 9826734
[71] Russo PM, De Pascalis V, Varriale V, Barratt ES ( 2008) Impulsivity, intelligence and P300 wave: an empirical study. International Journal of Psychophysiology 69( 2), 112-118.
doi: 10.1016/j.ijpsycho.2008.03.008 pmid: 18495279
[72] Dehaene S, Kerszberg M, Changeux JP ( 1998) A neuronal model of a global workspace in effortful cognitive tasks. Proceedings of the National Academy of Sciences of the United States of America 95, 14529-14534.
doi: 10.1111/j.1749-6632.2001.tb05714.x pmid: 9826734
[73] Jonkman L, Kemner C, Verbaten M, Van Engeland H, Camfferman G, Buitelaar J, Koelega H ( 2000) Attentional capacity, a probe ERP study: differences between children with attention-deficit hyperactivity disorder and normal control children and effects of methylphenidate. Psychophysiology 37( 3), 334-346.
doi: 10.1111/1469-8986.3730334 pmid: 10860411
[74] Kleih S, Nijboer F, Halder S, Kübler A ( 2010) Motivation modulates the P300 amplitude during brain-computer interface use. Clinical Neurophysiology 121( 7), 1023-1031.
doi: 10.1016/j.clinph.2010.01.034 pmid: 20188627
[75] Brookhuis KA, Mulder G, Mulder L, Gloerich A ( 1983) The P3 complex as an index of information processing: The effects of response probability. Biological Psychology 17( 4), 277-296.
doi: 10.1016/0301-0511(83)90004-2 pmid: 6661482
[76] Abboud S, Maidenbaum S, Dehaene S, Amedi A ( 2015) A number-form area in the blind. Nature Communications 6, 6026.
doi: 10.1038/ncomms7026
[77] Piazza M, Eger E ( 2016) Neural foundations and functional specificity of number representations. Neuropsychologia 83, 257-273.
doi: 10.1016/j.neuropsychologia.2015.09.025
[78] Shum J, Hermes D, Foster BL, Dastjerdi M, Rangarajan V, Winawer J, Miller KJ, Parvizi J ( 2013) A brain area for visual numerals. Journal of Neuroscience 33( 16), 6709-6715.
doi: 10.1523/JNEUROSCI.4558-12.2013 pmid: 3970733
[79] Grotheer M, Herrmann KH, Kovács G ( 2016) Neuroimaging evidence of a bilateral representation for visually presented numbers. Journal of Neuroscience 36( 1), 88-97.
doi: 10.1523/JNEUROSCI.2129-15.2016
[80] Roux FE, Lubrano V, Lauwers-Cances V, Giussani C, D´emonet JF ( 2008) Cortical areas involved in Arabic number reading. Neurology 70( 3), 210-217.
doi: 10.1212/01.wnl.0000297194.14452.a0 pmid: 18195265
[81] Park J, Hebrank A, Polk TA, Park DC ( 2012) Neural dissociation of number from letter recognition and its relationship to parietal numerical processing. Journal of Cognitive Neuroscience 24( 1), 39-50.
doi: 10.1162/jocn_a_00085
[82] Gow Jr DW, Caplan DN ( 2012) New levels of language processing complexity and organization revealed by granger causation. Frontiers in Psychology 19( 3), 506.
doi: 10.3389/fpsyg.2012.00506 pmid: 3536267
[1] Songyun Xie, Yabing Li. EEG effective connectivity networks for an attentive task requiring vigilance based on dynamic partial directed coherence[J]. Journal of Integrative Neuroscience, 2020, 19(1): 111-118.
[2] Wei Zhang, Shuze Liu, Jie Xiang, Jin Li, Aichun Qiao. Abnormal P50 sensory gating in schizophrenia: A permutation fuzzy entropy analysis[J]. Journal of Integrative Neuroscience, 2018, 17(4): 365-369.
[3] Gerardo Fernández, Nora P. Rotstein, Luis E. Politi, Liliana Castro, Osvaldo Agamennoni. Microsaccadic behavior when developing a complex dynamical activity[J]. Journal of Integrative Neuroscience, 2018, 17(3): 287-290.
[4] Shiva Khoshnoud, Mohammad Ali Nazari, Mousa Shamsi. Functional analysis of ADHD in children using nonlinear features of EEG signals[J]. Journal of Integrative Neuroscience, 2018, 17(1): 11-18.
No Suggested Reading articles found!