Please wait a minute...
Journal of Integrative Neuroscience  2018, Vol. 17 Issue (1): 19-25    DOI: 10.31083/JIN-170035
Research article Previous articles | Next articles
The role of rosemary extract in degeneration of hippocampal neurons induced by kainic acid in the rat: A behavioral and histochemical approach
Elahe Naderali1, Farnaz Nikbakht2, Sattar Norouzi Ofogh3, Homa Rasoolijazi1, 4, *()
1 Anatomy Department, Medical school, Iran University of Medical Sciences, Tehran, Iran
2 Physiology Department, Medical School, Iran University of Medical Sciences, Tehran, Iran
3 Neuroscience Department, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
4 Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
Download:  PDF(776KB)  ( 856 ) Full text   ( 40 )
Export:  BibTeX | EndNote (RIS)      
Abstract  

Systemic kainic acid administration has been used to induce experimental temporal lobe epilepsy in rats. The aim was to evaluate the neuroprotective effect of rosemary extract (40% Carnosic acid) against kainic acid-induced neurotoxicity in hippocampus and impaired learning and memory. Subjects received a single dose of kainic acid (9.5 mg/kg) intraperitoneally, were observed for two hours, and scored from 0 (for normal, no convulsion) to five (for continuous generalized limbic seizures). Rosemary extract (100 mg/kg, orally) was administered daily for 23 days, starting a week before kainic acid injection. Neuronal degeneration in hippocampus was demonstrated by using Fluoro-Jade B immunofluorescence. The number of pyramidal cells in hippocampus was evaluated by Nissl staining. Also, the Morris water maze and shuttle box were used to assess spatial memory and passive avoidance learning, respectively. Results revealed that, after treatment with rosemary extract, neuronal loss in CA1 decreased significantly in subjects in the kainic acid + rosemary extract group. Morris water navigation task results revealed that spatial memory impairment decreased in subjects in the kainic acid + rosemary extract group. Furthermore, results in shuttle box testing showed that passive avoidance learning impairment significantly improved for subjects in the kainic acid + rosemary extract group. These results suggest that rosemary extract improves spatial and working memory deficits and also, due to its antioxidant activities, neuronal degeneration induced by the toxicity of kainic acid in rat hippocampus.

Key words:  Epilepsy      kainic acid      neurotoxicity      rosemary      learning and memory      rosemary extract     
Submitted:  04 February 2017      Accepted:  24 May 2017      Published:  15 February 2018     
*Corresponding Author(s):  Homa Rasoolijazi     E-mail:  rasooli.h@iums.ac.ir

Cite this article: 

Elahe Naderali, Farnaz Nikbakht, Sattar Norouzi Ofogh, Homa Rasoolijazi. The role of rosemary extract in degeneration of hippocampal neurons induced by kainic acid in the rat: A behavioral and histochemical approach. Journal of Integrative Neuroscience, 2018, 17(1): 19-25.

URL: 

https://jin.imrpress.com/EN/10.31083/JIN-170035     OR     https://jin.imrpress.com/EN/Y2018/V17/I1/19

Fig.1.  Effect of KA (kainic acid) with or without RE (rosemary extract) on occurrence and intensity of seizure. Subjects in the control and RE groups received vehicle and rosemary extract, respectively. There was no sign (score 0) of the occurrence of seizure in these subjects. Other groups received KA alone (KA group) or with RE (KA+RE group) and were evaluated for signs of seizure. **p < 0.01 compared with the KA+RE group.

Fig.2.  Effects of systemic administration of KA alone or in combination with RE administration on memory retrieval in the passive avoidance task. On the test day, step-through latency for subjects was assessed as a measure of passive avoidance learning. ***p < 0.001 compared with the control and RE group, **p < 0.01 compared with the KA+RE group.

Fig.3.  Effects of systemic administration of KA alone or in combination with RE on spatial memory formation in the Morris water maze test. Animals were classified into four groups according to the administration (Control, RE, KA or KA+RE) and spatial memory formation was evaluated over 5 days. On days 1 and 5, there were no significant differences among groups in Morris water maze performance. On days 2 and 3, KA administration impaired spatial learning in the Morris water maze and caused a significant increase in escape latency when compared to both the control and RE groups. On day 2, post hoc analysis also revealed that escape latency decreased (not significantly) for the KA+RE group compared to the KA group (p = 0.06). On day 4, significant differences were observed between the KA group and the control group but not with the RE group. **p < 0.01 compared to the RE group, *p < 0.05 compared to the control and RE groups.

Fig.4.  The spatial probe test measured the time spent in the target quadrant (TQ). KA (kainic acid) administration caused subjects in the KA group to spend less time in the TQ compare to subjects in the control group. This performance by subjects demonstrated a spatial memory disability induced by KA. *p< 0.05 compared to control groups.

Fig.5.  Improvement effects of RE on hippocampal neurons survival influenced by KA (kainic acid). KA administration significantly decreased the number of intact neurons in CA1 cell layer. RE administration alone had no effect on neuronal survive in this layer compared to the control group, but RE reversed the KA-neurotoxicity in CA1 in the KA+RE group. ***p < 0.001 compared with the control group, ###p < 0.001 compared with the KA group.

Fig.6  Light micrographs of hippocampus with cresyl violet staining in the control, KA, RE, and KA+RE groups in CA1 cell layer of hippocampus (400 $ \mathrm{\times} $). Black and white arrows indicate intact and degenerating neurons, respectively.

Fig.7.  Fluorescent micrographs of hippocampus with Fluoro-Jade B (FJB) from control, KA, RE, and KA+RE groups in CA1 cell layer of hippocampus (x400). Black and white arrows indicate the intact and fluorescent positive neurons, and white arrows indicate the neurons, respectively. Numerous FJBstained positive neurons in the CA1 cell layer are seen in KA group. Rare FJB-stained fluorescent cells are detected in CA1 cell layer by pretreatment of RE.

[1] Kwan P, Brodie MJ ( 2006) Refractory epilepsy: mechanisms and solutions. Expert Review of Neurotherapeutics 6( 3), 397-406.
doi: 10.1586/14737175.6.3.397 pmid: 16533143
[2] Stafstrom CE, Thompson JL, Holmes GL ( 1992) Kainic acid seizures in the developing brain: status epilepticus and spontaneous recurrent seizures. Developmental Brain Research 65( 2), 227-236.
doi: 10.1016/0165-3806(92)90184-X pmid: 1572066
[3] Lewerenz J, Maher P ( 2015) Chronic Glutamate Toxicity in Neurodegenerative Diseases--What is the Evidence? Frontiers in Neuroscience 9, 469.
doi: 10.3389/fnins.2015.00469 pmid: 4679930
[4] Ferkany JW, Zaczek R, Coyle JT ( 1982) Kainic acid stimulates excitatory amino acid neurotransmitter release at presynaptic receptors. Nature 298( 5876), 757-759.
doi: 10.1038/298757a0 pmid: 6287270
[5] Sperk G ( 1994) Kainic acid seizures in the rat. Progress in Neurobiology 42( 1), 1-32.
doi: 10.1016/0301-0082(94)90019-1 pmid: 7480784
[6] Sun QJ, Duan RS, Wang AH, Shang W, Zhang T, Zhang XQ, Chi ZF ( 2009) Alterations of NR2B and PSD-95 expression in hippocampus of kainic acid-exposed rats with behavioural deficits. Behavioural Brain Research 201( 2), 292-299.
doi: 10.1016/j.bbr.2009.02.027 pmid: 19428647
[7] Jaako K, Aonurmhelm A, Kalda A, Anier K, Zharkovsky T, Shastin D, Zharkovsky A ( 2011) Repeated citalopram administration counteracts kainic acid-induced spreading of PSA-NCAM-immunoreactive cells and loss of reelin in the adult mouse hippocampus. European Journal of Pharmacology 666( 1-3), 61-71.
doi: 10.1016/j.ejphar.2011.05.008 pmid: 21596030
[8] Hynd MR, Scott HL, Dodd PR ( 2010) Selective loss of NMDA receptor NR1 subunit isoforms in Alzheimer’s disease. Journal of Neurochemistry 89( 1), 240-247.
doi: 10.1111/j.1471-4159.2003.02330.x pmid: 15030408
[9] Estrada Sánchez AM, Mejíatoiber J, Massieu L ( 2008) Excitotoxic neuronal death and the pathogenesis of Huntington’s disease. Archives of Medical Research 39( 3), 265-276.
doi: 10.1016/j.arcmed.2007.11.011 pmid: 18279698
[10] Heath PR, Tomkins J, Ince PG, Shaw PJ ( 2002) Quantitative assessment of AMPA receptor mRNA in human spinal motor neurons isolated by laser capture microdissection. Neuroreport 13( 14), 1753-1757.
doi: 10.1097/00001756-200210070-00012
[11] Ginsberg MD ( 2008) Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology 55( 3), 363-389.
doi: 10.1016/j.neuropharm.2007.12.007 pmid: 2631228
[12] Jin YC, Lim CM, Kim SW, Park JY, Seo JS, Han PL, Yoon SH, Lee JK ( 2009) Fluoxetine attenuates kainic acid-induced neuronal cell death in the mouse hippocampus. Journal of Neuroscience Research 84( 7), 108-116.
doi: 10.5607/en.2013.22.2.107 pmid: 3699671
[13] Lee J, Kim D, Hong H, Han S, Kim JY ( 2000) Protective effect of etomidate on kainic acid-induced neurotoxicity in rat hippocampus. Neuroscience Letters 286( 3), 179-182.
doi: 10.1016/S0304-3940(00)01118-6 pmid: 10832014
[14] Wang Q, Yu S, Simonyi A, Sun GY, Sun AY ( 2005) Kainic acidmediated excitotoxicity as a model for neurodegeneration. Molecular Neurobiology 31( 1-3), 3-16.
doi: 10.1385/MN:31:1-3
[15] Žegura B, Dobnik D, Niderl MH, Filipič M ( 2011) Antioxidant and antigenotoxic effects of rosemary (Rosmarinus officinalis L.) extracts in Salmonella typhimurium TA98 and HepG2 cells. Environmental Toxicology & Pharmacology 32( 2), 296-305.
doi: 10.1016/j.etap.2011.06.002 pmid: 21843811
[16] Özcan M ( 1999) Actividad antioxidante de extractos de romero (Rosmarinus officinalis L) en aceites de sésamo y de oliva: Antioxidant activity of rosemary (Rosmarinus officinalis L.) extracts on natural olive and sesame oils. Grasas Y Aceites 50( 5), 355-358.
doi: 10.3989/gya.1999.v50.i5
[17] Doolaege EH, Vossen E, Raes K, De MB, Verhé R, Paelinck H, De SS ( 2012) Effect of rosemary extract dose on lipid oxidation, colour stability and antioxidant concentrations, in reduced nitrite liver pates. Meat Science 90( 4), 925-931.
doi: 10.1016/j.meatsci.2011.11.034
[18] Sotelofélix JI, Martinezfong D, Muriel P, Santillán RL, Castillo D, Yahuaca P ( 2002) Evaluation of the effectiveness of Rosmarinus officinalis (Lamiaceae) in the alleviation of carbon tetrachloride-induced acute hepatotoxicity in the rat. Journal of Ethnopharmacology 81( 2), 145-154.
doi: 10.1016/S0378-8741(02)00090-9 pmid: 12065145
[19] Del CJ, Amiot MJ, Nguyen-The C ( 2000) Antimicrobial effect of rosemary extracts. Journal of Food Protection 63( 10), 1359-1368.
doi: 10.1002/1097-4660(200010)75:10<933::AID-JCTB301>3.3.CO;2-3 pmid: 11041135
[20] Amaral GP, de Carvalho NR, Barcelos RP, Dobrachinski F, Portella RL, Da SM, Lugokenski TH, Dias GR, Da LS, Boligon AA ( 2013) Protective action of ethanolic extract of Rosmarinus officinalis L. in gastric ulcer prevention induced by ethanol in rats. Food & Chemical Toxicology 55( 18), 48-55.
doi: 10.1016/j.fct.2012.12.038 pmid: 23279841
[21] Ramadan KS, Khalil OA, Danial EN, Alnahdi HS, Ayaz NO ( 2013) Hypoglycemic and hepatoprotective activity of Rosmarinus officinalis extract in diabetic rats. Journal of Physiology & Biochemistry 69( 4), 779-783.
doi: 10.1007/s13105-013-0253-8 pmid: 23625639
[22] Altinier G, Sosa S, Aquino RP, Mencherini T, Loggia RD, Tubaro A ( 2007) Characterization of Topical Antiinflammatory Compounds in Rosmarinus officinalis L. Journal of Agricultural and Food Chemistry 55( 5), 1718-1723.
doi: 10.1021/jf062610+ pmid: 17288440
[23] Machado DG, Cunha MP, Neis VB, Balen GO, Colla A, Bettio LE, Oliveira A, Pazini FL, Dalmarco JB, Simionatto EL ( 2013) Antidepressant-like effects of fractions, essential oil, carnosol and betulinic acid isolated from Rosmarinus officinalis L. Food Chemistry 136( 2), 999-1005.
doi: 10.1016/j.foodchem.2012.09.028 pmid: 23122155
[24] Racine RJ ( 1972) Modification of seizure activity by electrical stimulation: I. After-discharge threshold. Electroencephalography & Clinical Neurophysiology 32( 3), 269-279.
[25] Silva RH, Felicio LF, Frussafilho R ( 1999) Ganglioside GM1 attenuates scopolamine-induced amnesia in rats and mice. Psychopharmacology 141( 2), 111-117.
doi: 10.1007/s002130050814 pmid: 9952034
[26] Schmued LC, Hopkins KJ ( 2000) Fluoro-Jade: novel fluorochromes for detecting toxicant-induced neuronal degeneration. Toxicologic Pathology 28( 1), 91-99.
doi: 10.1177/019262330002800111 pmid: 10668994
[27] Gurbanova AA, Aker RG, Sirvanci S, Demiralp T, Onat FY ( 2008) Intra-amygdaloid injection of kainic acid in rats with genetic absence epilepsy: the relationship of typical absence epilepsy and temporal lobe epilepsy. Journal of Neuroscience the Official Journal of the Society for Neuroscience 28( 31), 7828-7836.
doi: 10.1523/JNEUROSCI.1097-08.2008 pmid: 18667615
[28] Sperk G, Lassmann H, Baran H, Kish SJ, Seitelberger F, Hornykiewicz O ( 1983) Kainic acid induced seizures: neurochemical and histopathological changes. Neuroscience 10( 4), 1301-1315.
doi: 10.1016/0306-4522(83)90113-6 pmid: 6141539
[29] Inostroza M, Cid E, Brotonsmas J, Gal B, Aivar P, Uzcategui YG, Sandi C, Prida LMDL ( 2011) Hippocampal-Dependent Spatial Memory in the Water Maze is Preserved in an Experimental Model of Temporal Lobe Epilepsy in Rats. Plos One 6( 7), e22372.
doi: 10.1371/journal.pone.0022372 pmid: 3144225
[30] Müller CJ, Gröticke I, Bankstahl M, Löscher W ( 2009) Behavioral and cognitive alterations, spontaneous seizures, and neuropathology developing after a pilocarpine-induced status epilepticus in C57BL/6 mice. Experimental Neurology 219( 1), 284-297.
doi: 10.1016/j.expneurol.2009.05.035 pmid: 19500573
[31] Kim DH, Yoon BH, Jung WY, Kim JM, Park SJ, Dong HP, Huh Y, Chan P, Cheong JH, Lee KT ( 2010) Sinapic acid attenuates kainic acidinduced hippocampal neuronal damage in mice. Neuropharmacology 59( 1, 2), 20-30.
doi: 10.1016/j.neuropharm.2010.03.012 pmid: 20363233
[32] Stubleyweatherly L, Harding JW, Wright JW ( 1996) Effects of discrete kainic acid-induced hippocampal lesions on spatial and contextual learning and memory in rats. Brain Research 716( 1, 2), 29-38.
doi: 10.1016/0006-8993(95)01589-2 pmid: 8738217
[33] Pearson JN, Schulz KM, Patel M ( 2014) Specific alterations in the performance of learning and memory tasks in models of chemoconvulsantinduced status epilepticus. Epilepsy Research 108( 6), 1032-1040.
doi: 10.1016/j.eplepsyres.2014.04.003 pmid: 24842343
[34] Bozzi Y, Vallone D, Borrelli E ( 2000) Neuroprotective role of dopamine against hippocampal cell death. Journal of Neuroscience the Official Journal of the Society for Neuroscience 20( 22), 8643-8649.
doi: 10.1016/S0306-4522(00)00405-X pmid: 11069974
[35] Tripathi PP, Santorufo G, Brilli E, Borrelli E, Bozzi Y ( 2010) Kainic acid-induced seizures activate GSK-3b in the hippocampus of D2R-/- mice. Neuroreport 21( 12), 846-850.
doi: 10.1097/WNR.0b013e32833d5891 pmid: 20625330
[36] Yoshihara Y, Onodera H, Iinuma K, Itoyama Y ( 2003) Abnormal kainic acid receptor density and reduced seizure susceptibility in dystrophindeficient mdx mice. Neuroscience 117( 2), 391-395.
doi: 10.1016/S0306-4522(02)00876-X pmid: 12614679
[37] Leutgeb S, Leutgeb JK, Barnes CA, Moser EI, Mcnaughton BL, Moser MB ( 2005) Independent codes for spatial and episodic memory in hippocampal neuronal ensembles. Science 309( 5734), 619-623.
doi: 10.1126/science.1114037 pmid: 16040709
[38] Riljak V, Milotová M, Jandová K, Langmeier M, Maresová D, Pokorný J, Trojan S ( 2005) Repeated kainic acid administration and hippocampal neuronal degeneration. Prague Medical Report 106( 1), 75-78.
pmid: 16007912
[39] Baba S, Onga K, Kakizawa S, Ohyama K, Yasuda K, Otsubo H, Scott BW, Burnham MI, Matsuo T, Nagata I ( 2016) Involvement of the neuronal phosphotyrosine signal adaptor N-Shc in kainic acid-induced epileptiform activity. Scientific Reports 6, 27511.
doi: 10.1038/srep27511 pmid: 27273072
[40] Liu G, Kotloski RJ, Mcnamara JO ( 2014) Antiseizure effects of TrkB kinase inhibition. Epilepsia 55( 8), 1264-1273.
doi: 10.1111/epi.12671 pmid: 4126863
[41] Cassel A, Morris R, Koutroumanidis M, Kopelman M ( 2016) Forgetting in temporal lobe epilepsy: When does it become accelerated? Cortex 78, 70-84.
doi: 10.1016/j.cortex.2016.02.005 pmid: 27010834
[42] Gascoigne MB, Smith ML, Barton B, Webster R, Gill D, Lah S ( 2014) Accelerated long-term forgetting in children with temporal lobe epilepsy. Neuropsychologia 59( 1), 93-102.
doi: 10.1016/j.neuropsychologia.2014.04.012 pmid: 24784007
[43] Halliwell B ( 2006) Oxidative stress and neurodegeneration: where are we now? Journal of Neurochemistry 97( 6), 1634-1658.
doi: 10.1111/jnc.2006.97.issue-6
[44] Liang LP, Beaudoin ME, Fritz MJ, Fulton R, Patel M ( 2007) Kainateinduced seizures, oxidative stress and neuronal loss in aging rats. Neuroscience 147( 4), 1114-1118.
doi: 10.1016/j.neuroscience.2007.03.026 pmid: 17590518
[45] Mishra V, Shuai B, Kodali M, Shetty GA, Hattiangady B, Rao X, Shetty AK ( 2015) Resveratrol Treatment after Status Epilepticus Restrains Neurodegeneration and Abnormal Neurogenesis with Suppression of Oxidative Stress and Inflammation. Scientific Reports 5, 17807.
doi: 10.1038/srep17807 pmid: 26639668
[46] Chan SL, Liu D, Kyriazis GA, Bagsiyao P, Ouyang X, Mattson MP ( 2006) Mitochondrial uncoupling protein-4 regulates calcium homeostasis and sensitivity to store depletion-induced apoptosis in neural cells. Journal of Biological Chemistry 281( 49), 37391-37403.
doi: 10.1074/jbc.M605552200 pmid: 17035241
[47] Ermak G, Davies KJ ( 2002) Calcium and oxidative stress: from cell signaling to cell death. Molecular Immunology 38( 10), 713-721.
doi: 10.1016/S0161-5890(01)00108-0 pmid: 11841831
[48] George S, Chaturvedi P ( 2008) Protective role of Ocimum canum plant extract in alcohol-induced oxidative stress in albino rats. British Journal of Biomedical Science 65( 2), 80-85.
doi: 10.1080/09674845.2008.11732802 pmid: 19055110
[49] Yoshioka S, Hamada A, Jobu K, Yokota J, Onogawa M, Kyotani S, Miyamura M, Saibara T, Onishi S, Nishioka Y ( 2010) Effects of Eriobotrya japonica seed extract on oxidative stress in rats with non-steatohepatitis. Journal of Pharmacy & Pharmacology 62( 2), 241-246.
doi: 10.1211/jpp.62.02.0012 pmid: 20487204
[50] Hritcu L, Noumedem JA, Cioanca O, Hancianu M, Kuete V, Mihasan M ( 2014) Methanolic extract of Piper nigrum fruits improves memory impairment by decreasing brain oxidative stress in amyloid beta(1-42) rat model of Alzheimer’s disease. Cellular & Molecular Neurobiology 34( 3), 437-449.
doi: 10.1007/s10571-014-0028-y pmid: 24442916
[51] Rašković A, Milanović I, Pavlović N, T Ć, Vukmirović S, Mikov M ( 2014) Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential. BMC Complementary and Alternative Medicine 14( 1), 225.
doi: 10.1186/1472-6882-14-225 pmid: 25002023
[52] Azad N, Rasoolijazi H, Joghataie MT, Soleimani S ( 2011) Neuroprotective Effects of Carnosic Acid in an Experimental Model of Alzheimer’s Disease in Rats. Cell Journal 13( 1), 39-44.
doi: 10.1016/j.nic.2015.10.001 pmid: 302
[53] Rasoolijazi H, Azad N, Joghataei MT, Kerdari M, Nikbakht F, Soleimani M ( 2013) The protective role of carnosic acid against beta-amyloid toxicity in rats. The Scientific World Journal 6, 917082.
doi: 10.1155/2013/917082 pmid: 3864083
[1] Rekha Sahu, Satya Ranjan Dash, Lleuvelyn A Cacha, Roman R Poznanski, Shantipriya Parida. Epileptic seizure detection: a comparative study between deep and traditional machine learning techniques[J]. Journal of Integrative Neuroscience, 2020, 19(1): 1-9.
[2] Qingxi Fu, Naiyong Gao, Fengyuan Che, Guangyin Xu, Hongxing Han, Quanping Su, Guozhao Ma. Diphenyleneiodonium chloride synergizes with diazoxide to enhance protection against amyloid β induced neurotoxicity[J]. Journal of Integrative Neuroscience, 2019, 18(4): 445-449.
[3] Shun Wang, Shanping Mao, Baozhen Yao, Dan Xiang, Congcong Fang. Effects of low-frequency repetitive transcranial magnetic stimulation on depression- and anxiety-like behaviors in epileptic rats[J]. Journal of Integrative Neuroscience, 2019, 18(3): 237-243.
[4] Jun Lu, Hongxing Huang, Qichang Zeng, Xinmei Zhang, Min Xu, Yi Cai, Qin Wang, Yahui Huang, Qiong Peng, Lanqiuzi Deng. Hippocampal neuron loss and astrogliosis in medial temporal lobe epileptic patients with mental disorders[J]. Journal of Integrative Neuroscience, 2019, 18(2): 127-132.
[5] Xiaojuan Wu, Yajie Wang, Zhenrong Sun, Shouchen Ren, Weili Yang, Yaxian Deng, Chaoxia Tian, Yazhen Yu, Baoqin Gao. Molecular expression and functional analysis of genes in children with temporal lobe epilepsy[J]. Journal of Integrative Neuroscience, 2019, 18(1): 71-77.
No Suggested Reading articles found!